1
|
Dong Q, An Y, Du G, Wang J, Liu J, Su J, Xie H, Liang C, Liu J. Identification of ginsenoside metabolites in plasma related to different bioactivities of Panax notoginseng and Panax Ginseng. Biomed Chromatogr 2022; 36:e5334. [PMID: 35045586 DOI: 10.1002/bmc.5334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
Although the chemical components of Panax notoginseng (PN) and Panax ginseng (PG) are similar, the bioactivities of them are different. In this study, the differential bioactivities of PN and PG were used as the research object. First, the different metabolites in the plasma after oral administration of PN and PG were analyzed by a UPLC-Q/TOF-MS-based metabolomics approach. Afterward, the metabolite-target- pathway network of PN and PG was constructed, thus the pathways related to different bioactivities were analyzed. As the results, 7 different metabolites were identified in PN group, and 10 different metabolites were identified in the PG group. In the PN group, the metabolite of N1 was related to hemostasis, N1 and N3 were related to inhibiting the nerve center, antihypertensive, and abirritation. The metabolites of N1, N3, N4, N5, and N6 were related to protecting the liver. The results showed that the metabolites of G1, G2, G3, G5, and G6 in PG group were related to anti-heart failure, and G1, G2, G6, and G9 were related to raising blood pressure. There were 13 signaling pathways related to different biological activities of PN (eight pathways) and PG (five pathways). These pathways further clarified the mechanism of action that caused the different bioactivities between PN and PG. In summary, metabolomics combined with network pharmacology could be helpful to clarify the material basis of different bioactivities between PN and PG, promoting the research on PN and PG.
Collapse
Affiliation(s)
- Qinghai Dong
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Yang An
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Guangguang Du
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jia Wang
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jiayin Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | - Jun Su
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| | | | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun, P. R. China
| | - Jihua Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, P. R. China
| |
Collapse
|
2
|
Yang XY, Wang WX, Huang YX, Yue SJ, Zhang BY, Gao H, Zhang L, Yan D, Tang YP. Network Pharmacology-Based Dissection of the Active Ingredients and Protective Mechanism of the Salvia Miltiorrhiza and Panax Notoginseng Herb Pair against Insulin Resistance. ACS OMEGA 2021; 6:17276-17288. [PMID: 34278114 PMCID: PMC8280704 DOI: 10.1021/acsomega.1c01209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The Salvia miltiorrhiza and Panax notoginseng herb pair (DQ) has been widely utilized in traditional Chinese medicine for the longevity and for preventing and treating cardio-cerebrovascular diseases. Often associated with cardio-cerebrovascular diseases are comorbidities such as insulin resistance. However, the protective mechanisms of DQ against insulin resistance remain not well understood. Through network pharmacology analysis, a total of 94 candidate active compounds selected from DQ (61 from S. miltiorrhiza Bunge and 33 from P. notoginseng (Burk.) F. H. Chen) interacted with 52 corresponding insulin resistance-related targets, which mainly involved insulin resistance and the AMPK signaling pathway. Furthermore, the contribution index calculation results indicated 25 compounds as the principal components of this herb pair against insulin resistance. Among them, ginsenoside F2, protocatechuic acid, and salvianolic acid B were selected and validated to promote glucose consumption through activating AMPK phosphorylation and upregulating GLUT4 in insulin-resistant cell model (HepG2/IR) cells. These findings indicated that DQ has the potential for repositioning in the treatment of insulin resistance mainly through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Xin-Yu Yang
- Department
of Pharmacy, Beijing Key Laboratory of Bio-characteristic Profiling
for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Wen-Xiao Wang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Yu-Xi Huang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Shi-Jun Yue
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Bai-Yang Zhang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Huan Gao
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| | - Lei Zhang
- Department
of Pharmacy, Beijing Key Laboratory of Bio-characteristic Profiling
for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Dan Yan
- Capital
Medical University Affiliated Beijing Friendship Hospital, Beijing 100050, China
| | - Yu-Ping Tang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, Shaanxi University
of Chinese Medicine, Xi’an 712046, China
| |
Collapse
|
3
|
Sarhene M, Ni JY, Duncan ES, Liu Z, Li S, Zhang J, Guo R, Gao S, Gao X, Fan G. Ginsenosides for cardiovascular diseases; update on pre-clinical and clinical evidence, pharmacological effects and the mechanisms of action. Pharmacol Res 2021; 166:105481. [PMID: 33549726 DOI: 10.1016/j.phrs.2021.105481] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) remains the major cause of death worldwide, accounting for almost 31% of the global mortality annually. Several preclinical studies have indicated that ginseng and the major bioactive ingredient (ginsenosides) can modulate several CVDs through diverse mechanisms. However, there is paucity in the translation of such experiments into clinical arena for cardiovascular ailments due to lack of conclusive specific pathways through which these activities are initiated and lack of larger, long-term well-structured clinical trials. Therefore, this review elaborates on current pharmacological effects of ginseng and ginsenosides in the cardiovascular system and provides some insights into the safety, toxicity, and synergistic effects in human trials. The review concludes that before ginseng, ginsenosides and their preparations could be utilized in the clinical treatment of CVDs, there should be more preclinical studies in larger animals (like the guinea pig, rabbit, dog, and monkey) to find the specific dosages, address the toxicity, safety and synergistic effects with other conventional drugs. This could lead to the initiation of large-scale, long-term well-structured randomized, and placebo-controlled clinical trials to test whether treatment is effective for a longer period and test the efficacy against other conventional therapies.
Collapse
Affiliation(s)
- Michael Sarhene
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Yu Ni
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Esi Sophia Duncan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Zhihao Liu
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Sheng Li
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Zhang
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Rui Guo
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Shan Gao
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China.
| |
Collapse
|
4
|
Karmazyn M, Gan XT. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension. Mol Cell Biochem 2020; 476:333-347. [PMID: 32940821 DOI: 10.1007/s11010-020-03910-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Ginseng is an ancient perennial herb belonging to the family Araliaceae and genus Panax which has been used for medical therapeutics for thousands of years, particularly in China and other Asian cultures although increasing interest in ginseng has recently emerged in western societies. Ginseng is a complex substance containing dozens of bioactive and potentially effective therapeutic compounds. Among the most studied are the ginsenosides, which are triterpene saponins possessing a wide array of potential therapeutic effects for many conditions. The quantity and type of ginsenoside vary greatly depending on ginseng species and their relative quantity in a given ginseng species is greatly affected by extraction processes as well as by subjecting ginseng to various procedures such as heating. Adding to the complexity of ginsenosides is their ability to undergo biotransformation to bioactive metabolites such as compound K by enteric bacteria following ingestion. Many ginsenosides exert vasodilatating effects making them potential candidates for the treatment of hypertension. Their vascular effects are likely dependent on eNOS activation resulting in the increased production of NO. One proposed end-mechanism involves the activation of calcium-activated potassium channels in vascular smooth cells resulting in reduced calcium influx and a vasodilatating effect, although other mechanisms have been proposed as discussed in this review.
Collapse
|
5
|
Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018; 42:264-269. [PMID: 29983607 PMCID: PMC6026386 DOI: 10.1016/j.jgr.2017.10.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023] Open
Abstract
Panax ginseng, also called Asian or Korean ginseng, has long been traditionally used in Korea and China to treat various diseases. The major active ingredients of P. ginseng are ginsenosides, which have been shown to have a variety of therapeutic effects, including antioxidation, anti-inflammatory, vasorelaxation, antiallergic, antidiabetic, and anticancer. To date, approximately 40 ginsenoside components have been reported. Current research is concentrating on using a single ginseng compound, one of the ginsenosides, instead of the total ginseng compounds, to determine the mechanisms of ginseng and ginsenosides. Recent in vitro and in vivo results show that ginseng has beneficial effects on cardiac and vascular diseases through efficacy, including antioxidation, control of vasomotor function, modulation of ion channels and signal transduction, improvement of lipid profiles, adjustment of blood pressure, improvement in cardiac function, and reduction in platelet adhesion. This review aims to provide valuable information on the traditional uses of ginseng and ginsenosides, their therapeutic applications in animal models and humans, and the pharmacological action of ginseng and ginsenosides.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
6
|
Huang Y, Kwan KKL, Leung KW, Yao P, Wang H, Dong TT, Tsim KWK. Ginseng extracts modulate mitochondrial bioenergetics of live cardiomyoblasts: a functional comparison of different extraction solvents. J Ginseng Res 2018; 43:517-526. [PMID: 31695560 PMCID: PMC6823796 DOI: 10.1016/j.jgr.2018.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/31/2017] [Accepted: 02/06/2018] [Indexed: 01/08/2023] Open
Abstract
Background The root of Panax ginseng, a member of Araliaceae family, has been used as herbal medicine and functional food in Asia for thousands of years. According to Traditional Chinese medicine, ginseng is the most widely used “Qi-invigorating” herbs, which provides tonic and preventive effects by resisting oxidative stress, influencing energy metabolism, and improving mitochondrial function. Very few reports have systematically measured cell mitochondrial bioenergetics after ginseng treatment. Methods Here, H9C2 cell line, a rat cardiomyoblast, was treated with ginseng extracts having extracted using solvents of different polarity, i.e., water, 50% ethanol, and 90% ethanol, and subsequently, the oxygen consumption rate in healthy and tert-butyl hydroperoxide–treated live cultures was determined by Seahorse extracellular flux analyzer. Results The 90% ethanol extracts of ginseng possessed the strongest antioxidative and tonic activities to mitochondrial respiration and therefore provided the best protective effects to H9C2 cardiomyocytes. By increasing the spare respiratory capacity of stressed H9C2 cells up to three-folds of that of healthy cells, the 90% ethanol extracts of ginseng greatly improved the tolerance of myocardial cells to oxidative damage. Conclusion These results demonstrated that the low polarity extracts of ginseng could be the best extract, as compared with others, in regulating the oxygen consumption rate of cultured cardiomyocytes during mitochondrial respiration.
Collapse
Affiliation(s)
- Yun Huang
- HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kenneth Kin Leung Kwan
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ka Wing Leung
- HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ping Yao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huaiyou Wang
- HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina Tingxia Dong
- HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Karl Wah Keung Tsim
- HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
7
|
Chu SM, Shih WT, Yang YH, Chen PC, Chu YH. Use of traditional Chinese medicine in patients with hyperlipidemia: A population-based study in Taiwan. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:129-135. [PMID: 25828254 DOI: 10.1016/j.jep.2015.03.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Chinese herbal products (CHPs) are commonly used in patients with hyperlipidemia in traditional Chinese medicine (TCM). Because hyperlipidemia and related disease are common issues worldwide, this study analyzed the prescription patterns and frequencies of CHPs for treating patients with hyperlipidemia in Taiwan. BACKGROUND Traditional Chinese medicine (TCM) has become popular as a therapy for controlling symptoms in patients with hyperlipidemia. This study aimed to analyze the prescription patterns of TCM for patients with hyperlipidemia in Taiwan. METHODS The study population was recruited from a random-sampled cohort of 1,000,000 people from the National Health Insurance Research Database between 2003 and 2009. We identified 30,784 outpatient visits related with hyperlipidemia diagnosis and collected these medical records. Association rules of data mining were conducted to explore the co-prescription patterns for Chinese herbal products (CHPs). RESULTS The most commonly prescribed herbal formula for hyperlipidemia treatment was Xue-Fu-Zhu-Yu-Tang (16.1%), and Shan Zha (Crataegi fructus; 25.0%) was the most commonly prescribed single herb. The most commonly prescribed combination of an herbal formula and a single herb was Xue-Fu-Zhu-Yu-Tang and Dan Shen (Radix Salviae Miltiorrhizae), and the most commonly prescribed combination of couplet herbs was Dan Shen and Shan Zha. CONCLUSION Xue-Fu-Zhu-Yu-Tang is the most frequently prescribed formula and is typically prescribed with Shan Zha, Dan Shen, and He Shou Wu for patients with hyperlipidemia. Clinical trials are warranted in future research to investigate the effects of the CHPs in terms of safety and efficacy and in particular to evaluate potential interactions with conventional treatments.
Collapse
Affiliation(s)
- Shih-Meng Chu
- Department for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chia-Yi 61363, Taiwan
| | - Wei-Tai Shih
- Department for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chia-Yi 61363, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei 10055, Taiwan
| | - Yao-Hsu Yang
- Department for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chia-Yi 61363, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei 10055, Taiwan; Center of Excellence for Chang Gung Research Datalink, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei 10055, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei 10055, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10055, Taiwan
| | - Yen-Hua Chu
- Department for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chia-Yi 61363, Taiwan.
| |
Collapse
|
8
|
Long W, Zhang SC, Wen L, Mu L, Yang F, Chen G. In vivo distribution and pharmacokinetics of multiple active components from Danshen and Sanqi and their combination via inner ear administration. JOURNAL OF ETHNOPHARMACOLOGY 2014; 156:199-208. [PMID: 25218322 DOI: 10.1016/j.jep.2014.08.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (Labiatae sp. plant, Chinese name Danshen) and Panax notoginseng (Burk.) F. H. Chen (Araliaceae plant, Chinese name Sanqi) have a long history in treating coronary heart disease, cerebrovascular disease and inner ear disorders in traditional Chinese medicine. To provide a rational basis for the use of these herbs in clinical practice, we investigated the in vivo distribution and pharmacokinetics of marker agents in Danshen and Sanqi via intravenous and inner ear administration and explored the potential interactions of these agents in compound prescription. MATERIALS AND METHODS Guinea pigs were given Danshen extracts (salvianolic acid B, tanshinone IIA), Sanqi extracts (Panax notoginseng saponins) and combination of the two extracts via intravenous and intratympanic administration (IT). Samples from the brain, inner ear perilymph (PL), cerebrospinal fluid (CSF) and plasma were collected at different time points. The concentration of salvianolic acid B (Sal B), tanshinone IIA (Ts IIA), notoginsenoside R₁ (R₁), ginsenoside Rg₁ (Rg₁) and ginsenoside Rb₁ (Rb₁) was determined by high-performance liquid chromatography coupled with a diode array detector (DAD). Pharmacokinetic parameters were estimated using non-compartmental methods. RESULTS Local drug application via inner ear greatly improved drug distribution within the PL, CSF and brain tissues compared with intravenous administration (IV). The values of Cmax and AUC(0-t) after IT were significantly higher than IV. In comparison with IT of Danshen and Sanqi alone, the pharmacokinetic parameters for R₁, Rg₁, Rb₁, Sal B and Ts IIA were markedly different in the compound prescription. The compound compatibility enhanced the transport of Danshen components into the brain through the inner ear and apparently prolonged the retention time in CSF while decreasing the distribution of Sanqi components in the inner ear and brain. CONCLUSIONS The results indicated that local drug application to the inner ear was a more effective delivery route than systemic administration. Co-administration of Danshen and Sanqi could cause significant pharmacokinetic herb-herb interactions in guinea pigs. The multiple active components via inner ear administration might be promising candidates for the treatment of inner ear and brain diseases.
Collapse
Affiliation(s)
- Wei Long
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shi-chang Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lei Mu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fan Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014; 38:161-6. [PMID: 25378989 PMCID: PMC4213864 DOI: 10.1016/j.jgr.2014.03.001] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Ginseng is widely used for its promising healing and restorative properties as well as for its possible tonic effect in traditional medicine. Nowadays, many studies focus on purified individual ginsenoside, an important constituent in ginseng, and study its specific mechanism of action instead of whole-plant extracts on cardiovascular diseases (CVDs). Of the various ginsenosides, purified ginsenosides such as Rb1, Rg1, Rg3, Rh1, Re, and Rd are the most frequently studied. Although there are many reports on the molecular mechanisms and medical applications of ginsenosides in the treatment of CVDs, many concerns exist in their application. This review discusses current works on the countless pharmacological functions and the potential benefits of ginseng in the area of CVDs. RESULTS Both in vitro and in vivo results indicate that ginseng has potentially positive effects on heart disease through its various properties including antioxidation, reduced platelet adhesion, vasomotor regulation, improving lipid profiles, and influencing various ion channels. To date, approximately 40 ginsenosides have been identified, and each has a different mechanism of action owing to the differences in chemical structure. This review aims to present comprehensive information on the traditional uses, phytochemistry, and pharmacology of ginseng, especially in the control of hypertension and cardiovascular function. In addition, the review also provides an insight into the opportunities for future research and development on the biological activities of ginseng.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
10
|
Kim JH. Cardiovascular Diseases and Panax ginseng: A Review on Molecular Mechanisms and Medical Applications. J Ginseng Res 2013; 36:16-26. [PMID: 23717100 PMCID: PMC3659571 DOI: 10.5142/jgr.2012.36.1.16] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 01/25/2023] Open
Abstract
Ginseng is one of the most widely used herbal medicines and is reported to have a wide range of therapeutic and pharmacological applications. Ginseng may also be potentially valuable in treating cardiovascular diseases. Research concerning cardiovascular disease is focusing on purified individual ginsenoside constituents of ginseng to reveal specific mechanisms instead of using whole ginseng extracts. The most commonly studied ginsenosides are Rb1, Rg1, Rg3, Rh1, Re, and Rd. The molecular mechanisms and medical applications of ginsenosides in the treatment of cardiovascular disease have attracted much attention and been the subject of numerous publications. Here, we review the current literature on the myriad pharmacological functions and the potential benefits of ginseng in this area. In vitro investigations using cell cultures and in vivo animal models have indicated ginseng's potential cardiovascular benefits through diverse mechanisms that include antioxidation, modifying vasomotor function, reducing platelet adhesion, influencing ion channels, altering autonomic neurotransmitters release, and improving lipid profiles. Some 40 ginsenosides have been identified. Each may have different effects in pharmacology and mechanisms due to their different chemical structures. This review also summarizes results of relevant clinical trials regarding the cardiovascular effects of ginseng, particularly in the management of hypertension and improving cardiovascular function.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
11
|
Yue QX, Xie FB, Song XY, Wu WY, Jiang BH, Guan SH, Yang M, Liu X, Guo DA. Proteomic studies on protective effects of salvianolic acids, notoginsengnosides and combination of salvianolic acids and notoginsengnosides against cardiac ischemic-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:659-667. [PMID: 21903157 DOI: 10.1016/j.jep.2011.08.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/08/2011] [Accepted: 08/21/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza and Panax notoginseng are popularly used traditional Chinese medicine for cardiovascular disorders and they are often used in the form of combination. However, mechanisms of their cardioprotective effects were still not clear. In the present study, the protective effects of salvianolic acids (SA), notoginsengnosides (NG) and combination of SA and NG (CSN) against rat cardiac ischemia-reperfusion injury were checked and the protein expression profiles of heart tissues were examined to search their possible protein targets. MATERIALS AND METHODS The cardioprotective effects of SA, NG and CSN were checked in a rat model of ischemia-reperfusion (IR) by temporarily occluding coronary artery for 20 min followed by reperfusion. Rats were grouped into sham-operation group, IR group, IR+SA group, IR+NG group and IR+CSN group. The plasma creatine kinase (CK) activities were measured using commercial kit and the percentages of infarcted area in total ventricle tissue were calculated after nitroblue-tetrazolium (N-BT) staining of heart tissue slices. Two-dimensional protein electrophoresis (2-DE) was used to check the protein expression profiles of heart tissues. Then, proteins differentially expressed between IR group and sham-operation group were identified using matrix assisted laser desorption ionization-time of flight-mass spectrometry/mass spectrometry (MALDI-TOF MS/MS). The regulative effects of SA, NG and CSN on these IR-related proteins were analyzed. RESULTS Treatments including SA, NG and CSN all showed cardioprotective effects against ischemia-reperfusion injury and CSN exhibited to be the best. Eighteen proteins involved in IR injury were found. These proteins are involved in pathways including energy metabolism, lipid metabolism, muscle contraction, heat shock stress, cell survival and proliferation. The regulation of these proteins by SA, NG or CSN suggested possible protein targets in their cardioprotective effects. CONCLUSIONS SA and NG showed both similarity and difference in their protein targets involved in cardioprotective effects. The capability of CSN to regulate both protein targets of SA and NG might be the basis of CSN to show cardioprotective effects better than that of SA or NG.
Collapse
MESH Headings
- Alkenes/isolation & purification
- Alkenes/pharmacology
- Animals
- Creatine Kinase/blood
- Disease Models, Animal
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Electrophoresis, Gel, Two-Dimensional
- Male
- Medicine, Chinese Traditional
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardium/metabolism
- Myocardium/pathology
- Panax notoginseng/chemistry
- Plants, Medicinal
- Polyphenols/isolation & purification
- Polyphenols/pharmacology
- Proteomics/methods
- Rats
- Rats, Wistar
- Salvia miltiorrhiza/chemistry
- Saponins/isolation & purification
- Saponins/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Time Factors
Collapse
Affiliation(s)
- Qing-Xi Yue
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ji KT, Chai JD, Xing C, Nan JL, Yang PL, Tang JF. Danshen protects endothelial progenitor cells from oxidized low-density lipoprotein induced impairment. J Zhejiang Univ Sci B 2010; 11:618-26. [PMID: 20669352 DOI: 10.1631/jzus.b1001008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we examined the protective effects of Danshen both on endothelial progenitor cells (EPCs) in patients with hypercholesterolemia and on in-vitro EPCs of healthy volunteers. In the clinical study, we randomly divided 24 subjects with hypercholesterolemia into two groups (the control group and the Danshen-treated group). At the end of two weeks of treatment, the EPC cellular functions of both groups were tested. The results indicated that, compared to the control group, EPCs in the Danshen-treated group showed significantly better cellular functions, which was manifested in the cloning number, the proliferation capacity, the number of EPC adhesions, and cell migration. In the subsequent in-vitro experiments, EPCs were treated with vehicle, oxidized low-density lipoprotein (Ox-LDL, 100 microg/ml), or Ox-LDL (100 microg/ml) plus different concentrations of Danshen (Danshensu 2, 10, or 50 microg/ml, respectively) for 24 h. The results showed that Danshen treatments can prevent the detrimental effects of Ox-LDL on EPC cellular functions measured by proliferation capacity (0.24+/-0.08, 0.37+/-0.11, 0.30+/-0.04 vs. 0.13+/-0.02, P<0.05, P<0.01, and P<0.01, respectively), and adhesion ability (63.00+/-11.60, 70.00+/-10.80, 85.50+/-11.41 vs. 40.50+/-6.85, all P<0.01). Compared to the group treated with Ox-LDL alone, Danshen treatment significantly decreased the lipid peroxidation end product malondialdehyde (MDA) [(4.34+/-0.54), (3.98+/-0.47), (3.46+/-0.31) vs. (5.57+/-0.64) nmol/ml, all P<0.01], increased the production of superoxide dismutase (SOD) [(29.74+/-0.71), (31.09+/-0.83), (30.41+/-0.65) vs. (14.76+/-3.99) U/ml, all P<0.01], and lowered the expression of interleukin-6 (IL-6) [(24.62+/-7.69), (27.04+/-3.14), (33.38+/-18.86) vs. (230.67+/-33.53) pg/ml, all P<0.01] and tumor necrosis factor-alpha (TNF-alpha) [(41.72+/-6.10), (17.02+/-6.82), (3.73+/-2.26) vs. (228.71+/-41.53) pg/ml, all P<0.01] in Ox-LDL treated EPCs. These results suggest that Danshen may exert a protective effect through its antioxidant and anti-inflammatory features.
Collapse
Affiliation(s)
- Kang-ting Ji
- Department of Cardiology, the Second Affiliated Hospital, Wenzhou Medical College, China
| | | | | | | | | | | |
Collapse
|