1
|
Signaling pathways underlying changes in the contractility of the stomach fundus smooth muscle in diabetic rats. Arch Pharm Res 2020; 43:666-675. [PMID: 32607942 DOI: 10.1007/s12272-020-01244-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/25/2020] [Indexed: 10/24/2022]
Abstract
Dysfunction of gastrointestinal (GI) motility is a common complication in patients with diabetes mellitus (DM). Studies related to changes in fundus contraction induced by inhibitors in DM are not well known. Therefore, this study aimed to investigate the signaling pathways involved in the changes in the contraction of fundus smooth muscle obtained from control and DM rats. DM was induced by injecting streptozotocin (65 mg/kg) into Sprague-Dawley rats. The rats were sacrificed after 14 days. Fundus smooth muscle contraction was stimulated using electrical field stimulation (amplitude, 50 V; duration, 1 min; frequency, 2-20 Hz) and acetylcholine (0.1 mM). The inhibitor-mediated cell membrane was pre-treated with atropine, verapamil, methysergide, ketanserin, ondansetron, and GR 113808. Inhibitors related to intracellular signaling, such as U73122, chelerythrine, L-NNA, were also used. ML-9 and Y-27632 were identified as inhibitors of factors of myosin light chain (MLC). The contractility was observed to be lower in the DM group than in the control group. Further, the activities of phospholipase C (PLC), protein kinase C (PKC), and myosin light chain kinase (MLCK) were decreased in the DM group. DM reduced the activity of PLC, PKC, and MLCK, which resulted in a decrease in the contractility of the fundus smooth muscle. Therefore, our results present the mechanism of this DM-mediated GI disorder.
Collapse
|
2
|
Khin PP, Zaw TS, Sohn UD. Signal Transduction Underlying the Inhibitory Mechanism of Fluoxetine on Electrical Field Stimulation Response in Rat Ileal Smooth Muscle. Pharmacology 2017; 99:216-225. [DOI: 10.1159/000449528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022]
|
3
|
Xiaopeng B, Tanaka Y, Ihara E, Hirano K, Nakano K, Hirano M, Oda Y, Nakamura K. Trypsin induces biphasic muscle contraction and relaxation via transient receptor potential vanilloid 1 and neurokinin receptors 1/2 in porcine esophageal body. Eur J Pharmacol 2017; 797:65-74. [PMID: 28088386 DOI: 10.1016/j.ejphar.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
Duodenal reflux of fluids containing trypsin relates to refractory gastroesophageal reflux disease (GERD). Esophageal peristalsis and clearance are important factors in GERD pathogenesis. However, the function of trypsin in esophageal body contractility is not fully understood. In this study, effects of trypsin on circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of the porcine esophageal body were examined. Trypsin elicited a concentration dependent biphasic response, a major contraction and a subsequent relaxation only in CSM. In CSM, contraction occurred at trypsin concentrations of 100nM and relaxation at 1μM. A proteinase-activated receptor (PAR)2 activating peptide, SLIGKV-NH2 (1mM), induced a monophasic contraction. Those responses were unaffected by tetrodotoxin though abolished by the gap junction uncouplers carbenoxolone and octanol. They were also partially inhibited by a transient receptor potential vanilloid type 1 (TRPV1) antagonist and abolished by combination of neurokinin receptor 1 (NK1) and NK2 antagonists, but not by an NK3 antagonist, suggesting a PAR2-TRPV1-substance P pathway in sensory neurons. Substance P (100nM), an agonist for various NK receptors (NK1, NK2 and NK3) with differing affinities, induced significant contraction in CSM, but not in LSM. The contraction was also blocked by the combination of NK1 and NK2 antagonists, but not by the NK3 antagonist. Moreover, substance P-induced contractions were unaffected by the TRPV1 antagonist, but inhibited by a gap junction uncoupler. In conclusion, trypsin induced a biphasic response only in CSM and this was mediated by PAR2, TRPV1 and NK1/2. Gap junctions were indispensable in this tachykinin-induced response.
Collapse
Affiliation(s)
- Bai Xiaopeng
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshimasa Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa Prefecture 761-0793, Japan
| | - Kayoko Nakano
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuhiko Nakamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Cho YR, Jang HS, Kim W, Park SY, Sohn UD. P2X and P2Y Receptors Mediate Contraction Induced by Electrical Field Stimulation in Feline Esophageal Smooth Muscle. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:311-6. [PMID: 21165330 DOI: 10.4196/kjpp.2010.14.5.311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 10/07/2010] [Accepted: 10/20/2010] [Indexed: 11/15/2022]
Abstract
It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 (10(-7)~10(-4) M), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue (10(-6)~10(-4) M), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist α,β-methylene 5'-adenosine triphosphate (αβMeATP, 10(-7)~10(-5) M) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[β-thio]diphosphate trilithium salt (ADPβS, 10(-7)~10(-5) M) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,N-diethyl-D-β,γ-dibromomethylene 5'-triphosphate triammonium (ARL 67156, 10(-4) M) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.
Collapse
Affiliation(s)
- Young Rae Cho
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | |
Collapse
|
5
|
Park SY, Shim JH, Kim M, Sun YH, Kwak HS, Yan X, Choi BC, Im C, Sim SS, Jeong JH, Kim IK, Min YS, Sohn UD. MLCK and PKC Involvements via Gi and Rho A Protein in Contraction by the Electrical Field Stimulation in Feline Esophageal Smooth Muscle. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:29-35. [PMID: 20221277 DOI: 10.4196/kjpp.2010.14.1.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 01/05/2023]
Abstract
We have shown that myosin light chain kinase (MLCK) was required for the off-contraction in response to the electrical field stimulation (EFS) of feline esophageal smooth muscle. In this study, we investigated whether protein kinase C (PKC) may require the on-contraction in response to EFS using feline esophageal smooth muscle. The contractions were recorded using an isometric force transducer. On-contraction occurred in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME), suggesting that nitric oxide acts as an inhibitory mediator in smooth muscle. The excitatory composition of both contractions was cholinergic dependent which was blocked by tetrodotoxin or atropine. The on-contraction was abolished in Ca(2+)-free buffer but reappeared in normal Ca(2+)-containing buffer indicating that the contraction was Ca(2+) dependent. 4-aminopyridine (4-AP), voltage-dependent K(+) channel blocker, significantly enhanced on-contraction. Aluminum fluoride (a G-protein activator) increased on-contraction. Pertussis toxin (a G(i) inactivator) and C3 exoenzyme (a rhoA inactivator) significantly decreased on-contraction suggesting that Gi or rhoA protein may be related with Ca(2+) and K(+) channel. ML-9, a MLCK inhibitor, significantly inhibited on-contraction, and chelerythrine (PKC inhibitor) affected on the contraction. These results suggest that endogenous cholinergic contractions activated directly by low-frequency EFS may be mediated by Ca(2+), and G proteins, such as Gi and rhoA, which resulted in the activation of MLCK, and PKC to produce the contraction in feline distal esophageal smooth muscle.
Collapse
Affiliation(s)
- Sun Young Park
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|