1
|
Prakash E, Pavithra S, Kishor Kumar DG, Panigrahi M, Singh TU, Kumar D, Parida S. TXA2 mediates LPA1-stimulated uterine contraction in late pregnant mouse. Prostaglandins Other Lipid Mediat 2023; 167:106736. [PMID: 37062326 DOI: 10.1016/j.prostaglandins.2023.106736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Lysophosphatidic acid (LPA) is known to increase uterine contraction in the estrus cycle and early pregnancy, however, the effect of LPA in late pregnant uterus and its mechanisms are not clear. In the present study, we show the LPA receptor subtypes expressed and the mechanism of LPA-induced contractions in late pregnant mouse uterus. We determined the relative mRNA expression of LPA receptor genes by quantitative PCR and elicited log concentration-response curves to oleoyl-L-α-LPA by performing tension experiments in the presence and absence of nonselective and selective receptor antagonists and inhibitors of the TXA2 pathway. LPA1 was the most highly expressed receptor subtype in the late pregnant mouse uterus and LPA1/2/3 agonist (Oleoyl-L-α LPA) elicited increased contractions in this tissue that had lesser efficacy compared to oxytocin. LPA1/3 antagonist, Ki-16425, and a potent LPA1 antagonist (AM-095) significantly inhibited the LPA-induced contractions. Further, the nonselective COX inhibitor, indomethacin, and potent thromboxane A2 synthase inhibitor, furegrelate significantly impaired LPA-induced contractions. Moreover, selective thromboxane receptor (TP) antagonist, SQ-29548, and Rho kinase inhibitor, Y-27632 almost eliminated LPA-induced uterine contractions. LPA1 stimulation elicits contractions in the late pregnant mouse uterus using the contractile prostanoid, TXA2 and may be targeted to induce labor in uterine dysfunctions/ dystocia.
Collapse
Affiliation(s)
- E Prakash
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - S Pavithra
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - D G Kishor Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| |
Collapse
|
2
|
Ha HS, Lee SE, Lee HS, Kim GH, Yoon CJ, Han JS, Lee JY, Sohn UD. The signaling of protease-activated receptor-2 activating peptide-induced contraction in cat esophageal smooth muscle cells. Arch Pharm Res 2017; 40:1443-1454. [PMID: 29098568 DOI: 10.1007/s12272-017-0975-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/19/2017] [Indexed: 11/26/2022]
Abstract
Protease-activated receptors (PARs) are a family of G protein-coupled receptors with a unique activation mechanism involving proteolytic cleavage of the extracellular N-terminal domain of the receptor. PAR2 has a contractile effect on esophageal smooth muscle. We investigate the signaling pathways of the PAR2-activating peptide (PAR2-AP) induced contraction in cat esophageal smooth muscle cells. The length of freshly isolated smooth muscle cells and permeabilized cells from feline esophagus were measured by scanning micrometry, and by confirming molecular basis via western blot analysis. The responses to PAR2-AP were initial and sustained contractions, depending on time. The maximum contraction of the initial phase occurred at 60 s. The PAR2-AP-induced contraction was mediated by Gαi1, Gαi3, and Gαq protein activation, leading to phospholipase-c (PLC) and myosin light chain kinase (MLCK) activation. 20 kDa myosin light chain (MLC20) was phosphorylated by PAR2-AP. Rho kinase-2 (ROCK-2), an activator of 17 kDa C-kinase potentiated Protein phosphatase-1 Inhibitor (CPI-17), was increased by PAR2 receptor activation. In conclusion, PAR2-AP produced an initial contraction mediated by Gαi1, Gαi3, and Gαq protein activation, resulting in PLC and MLCK activation. The sustained contraction by PAR2-AP was mediated by the Rho/Rho kinase-dependent pathway.
Collapse
Affiliation(s)
- Hyun Su Ha
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Se Eun Lee
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Hyun Seok Lee
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Gil Hyung Kim
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Chan Jong Yoon
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Jong Soo Han
- College of Pharmacy, Chung-Ang University, Seoul, 156 -756, Republic of Korea
| | - Ji-Yun Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
3
|
Kwon TH, Jung H, Cho EJ, Jeong JH, Sohn UD. The Signaling Mechanism of Contraction Induced by ATP and UTP in Feline Esophageal Smooth Muscle Cells. Mol Cells 2015; 38:616-23. [PMID: 26013385 PMCID: PMC4507027 DOI: 10.14348/molcells.2015.2357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/07/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022] Open
Abstract
P2 receptors are membrane-bound receptors for extracellular nucleotides such as ATP and UTP. P2 receptors have been classified as ligand-gated ion channels or P2X receptors and G protein-coupled P2Y receptors. Recently, purinergic signaling has begun to attract attention as a potential therapeutic target for a variety of diseases especially associated with gastroenterology. This study determined the ATP and UTP-induced receptor signaling mechanism in feline esophageal contraction. Contraction of dispersed feline esophageal smooth muscle cells was measured by scanning micrometry. Phosphorylation of MLC20 was determined by western blot analysis. ATP and UTP elicited maximum esophageal contraction at 30 s and 10 μM concentration. Contraction of dispersed cells treated with 10 μM ATP was inhibited by nifedipine. However, contraction induced by 0.1 μM ATP, 0.1 μM UTP and 10 μM UTP was decreased by U73122, chelerythrine, ML-9, PTX and GDPβS. Contraction induced by 0.1 μM ATP and UTP was inhibited by Gαi3 or Gαq antibodies and by PLCβ1 or PLCβ3 antibodies. Phosphorylated MLC20 was increased by ATP and UTP treatment. In conclusion, esophageal contraction induced by ATP and UTP was preferentially mediated by P2Y receptors coupled to Gαi3 and G q proteins, which activate PLCβ1 and PLCβ3. Subsequently, increased intracellular Ca(2+) and activated PKC triggered stimulation of MLC kinase and inhibition of MLC phosphatase. Finally, increased pMLC20 generated esophageal contraction.
Collapse
Affiliation(s)
- Tae Hoon Kwon
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756,
Korea
| | - Hyunwoo Jung
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756,
Korea
| | - Eun Jeong Cho
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756,
Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756,
Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756,
Korea
| |
Collapse
|
4
|
Staiculescu MC, Ramirez-Perez FI, Castorena-Gonzalez JA, Hong Z, Sun Z, Meininger GA, Martinez-Lemus LA. Lysophosphatidic acid induces integrin activation in vascular smooth muscle and alters arteriolar myogenic vasoconstriction. Front Physiol 2014; 5:413. [PMID: 25400583 PMCID: PMC4215695 DOI: 10.3389/fphys.2014.00413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/06/2014] [Indexed: 01/16/2023] Open
Abstract
In vascular smooth muscle cells (VSMC) increased integrin adhesion to extracellular matrix (ECM) proteins, as well as the production of reactive oxygen species (ROS) are strongly stimulated by lysophosphatidic acid (LPA). We hypothesized that LPA-induced generation of ROS increases integrin adhesion to the ECM. Using atomic force microscopy (AFM) we determined the effects of LPA on integrin adhesion to fibronectin (FN) in VSMC isolated from rat (Sprague-Dawley) skeletal muscle arterioles. In VSMC, exposure to LPA (2 μM) doubled integrin-FN adhesion compared to control cells (P < 0.05). LPA-induced integrin-FN adhesion was reduced by pre-incubation with antibodies against β1 and β3 integrins (50 μg/ml) by 66% (P < 0.05). Inhibition of LPA signaling via blockade of the LPA G-protein coupled receptors LPAR1 and LPAR3 with 10 μM Ki16425 reduced the LPA-enhanced adhesion of VSCM to FN by 40% (P < 0.05). Suppression of ROS with tempol (250 μM) or apocynin (300 μM) also reduced the LPA-induced FN adhesion by 47% (P < 0.05) and 59% (P < 0.05), respectively. Using confocal microscopy, we observed that blockade of LPA signaling, with Ki16425, reduced ROS by 45% (P < 0.05), to levels similar to control VSMC unexposed to LPA. In intact isolated arterioles, LPA (2 μM) exposure augmented the myogenic constriction response to step increases in intraluminal pressure (between 40 and 100 mm Hg) by 71% (P < 0.05). The blockade of LPA signaling, with Ki16425, decreased the LPA-enhanced myogenic constriction by 58% (P < 0.05). Similarly, blockade of LPA-induced ROS release with tempol or gp91 ds-tat decreased the LPA-enhanced myogenic constriction by 56% (P < 0.05) and 55% (P < 0.05), respectively. These results indicate that, in VSMC, LPA-induced integrin activation involves the G-protein coupled receptors LPAR1 and LPAR3, and the production of ROS, and that LPA may play an important role in the control of myogenic behavior in resistance vessels through ROS modulation of integrin activity.
Collapse
Affiliation(s)
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA
| | - Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA
| | - Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| |
Collapse
|