1
|
Metformin and epothilone A treatment up regulate pro-apoptotic PARP-1, Casp-3 and H2AX genes and decrease of AKT kinase level to control cell death of human hepatocellular carcinoma and ovary adenocarcinoma cells. Toxicol In Vitro 2017; 47:48-62. [PMID: 29117515 DOI: 10.1016/j.tiv.2017.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/20/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
High mortality rates in ovarian and liver cancer are largely a result of resistance to currently used chemotherapy. Here, we investigated genotoxic and pro-oxidant effects of metformin (MET) and epothilone A (A) in combination with respect to apoptosis in HepG2 and SKOV-3 cancer cells. Reactive oxygen species (ROS) was studied using 2',7'-dichlorodihydrofluoresein diacetate, and samples were analyzed for the presence and absence of the N-acetylcysteine (NAC). Expression of genes involved in programmed cell death, oxidative and alkylating DNA damage was measured. Probes were analyzed in the presence of Akt or nuclear factor-κB inhibitor. Compared to either drug alone, combination of epothilone A and metformin was more potent; decreased Akt level; and elevated percentage of apoptotic cells, induced cell cycle arrest at G1 phase and elevated the sub-G1 cell population by increasing the mRNA level of caspase-3, poly (ADP-ribose) polymerase-1 and H2AX. The anticancer effect of the drug combination was partially reversed by NAC supplementation, suggesting that ROS generation is required to induce apoptosis. The present study demonstrates that novel combination such as epothilone A and MET show promise in expanding ovarian and liver cancer therapy.
Collapse
|
2
|
Jiang W, Sheng C, Gu X, Liu D, Yao C, Gao S, Chen S, Huang Y, Huang W, Fang M. Suppression of Rac1 Signaling by Influenza A Virus NS1 Facilitates Viral Replication. Sci Rep 2016; 6:35041. [PMID: 27869202 PMCID: PMC5116764 DOI: 10.1038/srep35041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022] Open
Abstract
Influenza A virus (IAV) is a major human pathogen with the potential to become pandemic. IAV contains only eight RNA segments; thus, the virus must fully exploit the host cellular machinery to facilitate its own replication. In an effort to comprehensively characterize the host machinery taken over by IAV in mammalian cells, we generated stable A549 cell lines with over-expression of the viral non-structural protein (NS1) to investigate the potential host factors that might be modulated by the NS1 protein. We found that the viral NS1 protein directly interacted with cellular Rac1 and facilitated viral replication. Further research revealed that NS1 down-regulated Rac1 activity via post-translational modifications. Therefore, our results demonstrated that IAV blocked Rac1-mediated host cell signal transduction through the NS1 protein to facilitate its own replication. Our findings provide a novel insight into the mechanism of IAV replication and indicate new avenues for the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunjie Sheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Yao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijuan Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Key Laboratory of Tumor Targeted Drug in Guangdong Province, Guangzhou Double Bioproducts Co., Ltd., Guangzhou, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Rogalska A, Sliwinska A, Kasznicki J, Drzewoski J, Marczak A. Effects of Epothilone A in Combination with the Antidiabetic Drugs Metformin and Sitagliptin in HepG2 Human Hepatocellular Cancer Cells: Role of Transcriptional Factors NF-κB and p53. Asian Pac J Cancer Prev 2016; 17:993-1001. [DOI: 10.7314/apjcp.2016.17.3.993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
4
|
ZHENG ZHONGHUI, DING MULIANG, NI JIANGDONG, SONG DEYE, HUANG JUN, WANG JUNJIE. miR-142 acts as a tumor suppressor in osteosarcoma cell lines by targeting Rac1. Oncol Rep 2014; 33:1291-9. [DOI: 10.3892/or.2014.3687] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/12/2014] [Indexed: 11/05/2022] Open
|