1
|
The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. Neurotoxicology 2022; 92:131-155. [PMID: 35914637 DOI: 10.1016/j.neuro.2022.07.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022]
Abstract
Investigation of the toxicity triggered by chemicals on the human brain has traditionally relied on approaches using rodent in vivo models and in vitro cell models including primary neuronal cultures and cell lines from rodents. The issues of species differences between humans and rodents, the animal ethical concerns and the time and cost required for neurotoxicity studies on in vivo animal models, do limit the use of animal-based models in neurotoxicology. In this context, human cell models appear relevant in elucidating cellular and molecular impacts of neurotoxicants and facilitating prioritization of in vivo testing. The SH-SY5Y human neuroblastoma cell line (ATCC® CRL-2266TM) is one of the most used cell lines in neurosciences, either undifferentiated or differentiated into neuron-like cells. This review presents the characteristics of the SH-SY5Y cell line and proposes the results of a systematic review of literature on the use of this in vitro cell model for neurotoxicity research by focusing on organic environmental pollutants including pesticides, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), flame retardants, PFASs, parabens, bisphenols, phthalates, and PAHs. Organic environmental pollutants are widely present in the environment and increasingly known to cause clinical neurotoxic effects during fetal & child development and adulthood. Their effects on cultured SH-SY5Y cells include autophagy, cell death (apoptosis, pyroptosis, necroptosis, or necrosis), increased oxidative stress, mitochondrial dysfunction, disruption of neurotransmitter homeostasis, and alteration of neuritic length. Finally, the inherent advantages and limitations of the SH-SY5Y cell model are discussed in the context of chemical testing.
Collapse
|
2
|
Fu F, Li LS, Li R, Deng Q, Yu QX, Yang X, Pan M, Han J, Zhen L, Zhang LN, Lei TY, Li DZ, Liao C. All-trans-retinoid acid induces the differentiation of P19 cells into neurons involved in the PI3K/Akt/GSK3β signaling pathway. J Cell Biochem 2020; 121:4386-4396. [PMID: 31961017 DOI: 10.1002/jcb.29659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
The pluripotent mouse embryonal carcinoma cell line P19 is widely used as a model for research on all-trans-retinoid acid (RA)-induced neuronal differentiation; however, the signaling pathways involved in this process remain unclear. This study aimed to reveal the molecular mechanism underlying the RA-induced neuronal differentiation of P19 cells. Real-time quantitative polymerase chain reaction and Western blot analysis were used to determine the expression of neuronal-specific markers, whereas flow cytometry was used to analyze cell cycle and cell apoptosis. The expression profiles of messenger RNAs (mRNAs) in RA-induced neuronal differentiation of P19 cells were analyzed using high-throughput sequencing, and the functions of differentially expressed mRNAs (DEMs) were determined by bioinformatics analysis. RA induced an increase in both class III β-tubulin (TUBB3) and neurofilament medium (NEFM) mRNA expression, indicating that RA successfully induces neuronal differentiation of P19 cells. Cell apoptosis was not affected; however, cell proliferation decreased. We found 4117 DEMs, which were enriched in the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, Wnt signaling pathway, and cell cycle. Particularly, a few DEMs could be identified in the PI3K/Akt signaling pathway networks, such as PI3K, Akt, glycogen synthase kinase-3β (GSK3β), cyclin-dependent kinase 4 (CDK4), P21, and Bax. RA significantly increased the protein expression of PI3K, Akt, phosphorylated Akt, GSK3β, phosphorylated GSK3β, CDK4, and P21, but it reduced Bax protein expression. The Akt inhibitor affected the increase of TUBB3 and NEFM mRNA expression in RA-induced P19 cells. The molecular mechanism underlying the RA-induced neuronal differentiation of P19 cells is potentially involved in the PI3K/Akt/GSK3β signaling pathway. The decreased cell proliferation ability of neuronally differentiated P19 cells could be associated with the expression of cell cycle proteins.
Collapse
Affiliation(s)
- Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu-Shan Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiong Deng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiu-Xia Yu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Pan
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhen
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li-Na Zhang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting-Ying Lei
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Hirano K, Fujimaki M, Sasazawa Y, Yamaguchi A, Ishikawa KI, Miyamoto K, Souma S, Furuya N, Imamichi Y, Yamada D, Saya H, Akamatsu W, Saiki S, Hattori N. Neuroprotective effects of memantine via enhancement of autophagy. Biochem Biophys Res Commun 2019; 518:161-170. [DOI: 10.1016/j.bbrc.2019.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023]
|
4
|
Zhu B, Chen S, Hu X, Jin X, Le Y, Cao L, Yuan Z, Lin Z, Jiang S, Sun L, Yu L. Knockout of the Nogo-B Gene Attenuates Tumor Growth and Metastasis in Hepatocellular Carcinoma. Neoplasia 2017; 19:583-593. [PMID: 28628795 PMCID: PMC5476975 DOI: 10.1016/j.neo.2017.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 01/05/2023]
Abstract
Human hepatocellular carcinoma (HCC) is a malignant cancer. It is a challenge to develop anti-HCC drugs due to HCC's extreme aggressiveness and with the sensitivity of the liver to show severe adverse effects. More importantly, the precise mechanisms causing HCC pathogenicity are not known. Our previous study disclosed Nogo-B as a reticulon 4 (Rtn4) family member. In the present study, we first identified that Nogo-B played a critical role in HCC progression. We found, via in vitro and in vivo assays, that Nogo-B was expressed aberrantly in primary HCC tumor tissues and immortal HCC cells but was relatively scarce in the normal liver tissues or cells. Nogo-B knockout, via the CRISPR-Cas9 technique, resulted in significant suppression of HCC cell proliferation and tumor growth. Next-generation sequencing analysis showed that Nogo-B knockout have effects on interleukin-6 (IL-6) signaling pathway. Furthermore, we observed that IL-6 induced phosphorylation of STAT3 (pSTAT3) in wild-type HCC cells, but Nogo-B knockout could reduce IL-6-induced increase of pSTAT3, supporting that Nogo-B affects HCC tumor progression possibly via regulating the IL-6/STAT3 signaling pathway. In conclusion, Nogo-B is expressed aberrantly in HCCs and plays an oncogenic role. These findings support that Nogo-B may be a novel anti-HCC therapeutic target.
Collapse
Affiliation(s)
- Bo Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Shaobo Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Xiaoding Hu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Xiaofeng Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Yichen Le
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Lihuan Cao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Zhonghua Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Human, University of South China, Hengyang 421001, China
| | - Zhen Lin
- Department of pathology, School of Medicine, Tulane Health Sciences Center, New Orleans, LA 70112-2699, USA
| | - Songmin Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| | - Lichun Sun
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China; Department of Medicine, School of Medicine, Tulane Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| |
Collapse
|