1
|
Jang J, Kang KW, Kim YW, Jeong S, Park J, Park J, Moon J, Jang J, Kim S, Kim S, Cho S, Lee Y, Kim HK, Han J, Ko EA, Jung SC, Kim JH, Ko JH. Cardioprotection via mitochondrial transplantation supports fatty acid metabolism in ischemia-reperfusion injured rat heart. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:209-217. [PMID: 38682169 PMCID: PMC11058541 DOI: 10.4196/kjpp.2024.28.3.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
In addition to cellular damage, ischemia-reperfusion (IR) injury induces substantial damage to the mitochondria and endoplasmic reticulum. In this study, we sought to determine whether impaired mitochondrial function owing to IR could be restored by transplanting mitochondria into the heart under ex vivo IR states. Additionally, we aimed to provide preliminary results to inform therapeutic options for ischemic heart disease (IHD). Healthy mitochondria isolated from autologous gluteus maximus muscle were transplanted into the hearts of Sprague-Dawley rats damaged by IR using the Langendorff system, and the heart rate and oxygen consumption capacity of the mitochondria were measured to confirm whether heart function was restored. In addition, relative expression levels were measured to identify the genes related to IR injury. Mitochondrial oxygen consumption capacity was found to be lower in the IR group than in the group that underwent mitochondrial transplantation after IR injury (p < 0.05), and the control group showed a tendency toward increased oxygen consumption capacity compared with the IR group. Among the genes related to fatty acid metabolism, Cpt1b (p < 0.05) and Fads1 (p < 0.01) showed significant expression in the following order: IR group, IR + transplantation group, and control group. These results suggest that mitochondrial transplantation protects the heart from IR damage and may be feasible as a therapeutic option for IHD.
Collapse
Affiliation(s)
- Jehee Jang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Ki-Woon Kang
- Divsion of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, Seoul 06973, Korea
| | - Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Seohyun Jeong
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Jaeyoon Park
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Jihoon Park
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Jisung Moon
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Junghyun Jang
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Seohyeon Kim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Sunghun Kim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Sungjoo Cho
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Yurim Lee
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, SMART Marine Therapeutics Center, Inje University, Busan 47392, Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, SMART Marine Therapeutics Center, Inje University, Busan 47392, Korea
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Jung-Ha Kim
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, Seoul 06973, Korea
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
2
|
He P, Low RJY, Burns SF, Lipik V, Tok AIY. Enhanced far infrared emissivity, UV protection and near-infrared shielding of polypropylene composites via incorporation of natural mineral for functional fabric development. Sci Rep 2023; 13:22329. [PMID: 38102206 PMCID: PMC10724279 DOI: 10.1038/s41598-023-49897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023] Open
Abstract
Far infrared radiation in the range of 4-20 µm has been showed to have biological and health benefits to the human body. Therefore, incorporating far-infrared emissivity additives into polymers and/or fabrics hold promise for the development of functional textiles. In this study, we incorporated nine types of natural minerals into polypropylene (PP) film and examined their properties to identify potential candidates for functional textiles and apparels. The addition of 2% mineral powders into PP film increased the far-infrared emissivity (5-14 µm) by 7.65%-14.48%. The improvement in far-infrared emissivity within the range of 5-14 µm, which overlaps with the peak range of human skin radiation at 8-14 µm, results in increased absorption efficiency, and have the potential to enhance thermal and biological effects. Moreover, the incorporation of mineral powders in PP films exhibited favorable ultraviolet (UV) protection and near-infrared (NIR) shielding properties. Two films, specifically those containing red ochre and hematite, demonstrated excellent UV protection with a UPF rating of 50+ and blocked 99.92% and 98.73% of UV radiation, respectively. Additionally, they showed 95.2% and 93.2% NIR shielding properties, compared to 54.1% NIR shielding properties of PP blank films. The UV protection and NIR shielding properties offered additional advantages for the utilization of polymer composite with additives in the development of sportswear and other outdoor garments. The incorporation of minerals could absorb near-IR radiation and re-emit them at longer wavelength in the mid-IR region. Furthermore, the incorporation of minerals significantly improved the heat retention of PP films under same heat radiation treatment. Notably, films with red ochre and hematite exhibited a dramatic temperature increase, reaching 2.5 and 3.2 times the temperature increase of PP films under same heat radiation treatment, respectively (46.8 °C and 59.9 °C higher than the temperature increase of 20.9 °C in the PP film). Films with additives also demonstrated lower thermal effusivity than PP blank films, indicating superior heat insulation properties. Therefore, polypropylene films with mineral additives, particularly those containing red ochre and hematite, showed remarkable heat capacity, UV-protection, NIR-shielding properties and enhanced far infrared emissivity, making them promising candidates for the development of functional textiles.
Collapse
Affiliation(s)
- Pengfei He
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rayland Jun Yan Low
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Stephen Francis Burns
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Vitali Lipik
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Alfred Iing Yoong Tok
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
3
|
Carrick FR, Hernandez LSAV, Sugaya K. Amelioration of Motor Performance and Nigrostriatal Dopamine Cell Volume Using a Novel Far-Infrared Ceramic Blanket in an A53T Alpha-Synuclein Transgenic Parkinson's Disease Mouse Model. Curr Issues Mol Biol 2023; 45:9823-9837. [PMID: 38132459 PMCID: PMC10742635 DOI: 10.3390/cimb45120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
We had attended a Parkinson's Disease (PD) patient for a non-healing wound who reported a marked decrease in his hand tremor and freezing of gait when his wound was exposed to a ceramic far-field infrared (cFIR) blanket. PD is the most frequent motor disorder and the second most frequent neurodegenerative disease after Alzheimer's Disease (AD). The tremor, rigidity, and slowness of movement associated with Parkinson's disease (PD) affect up to 10 million people throughout the world, and the major contributing factor to the pathogenesis of PD is the accumulation and propagation of pathological α-synuclein (α-Syn) and the death of dopaminergic cells in the Nigrostriatal system. Efforts to slow or stop its spreading have resulted in the development and use of dopaminergic drug replacement therapy. Unfortunately, there is a loss of about 70-80% of substantia nigral dopaminergic neurons in patients by the time they are diagnosed with PD, and various dopaminergic drugs provide only temporary relief of their motor symptoms. There are limitations in treating PD with many conventional medications, necessitating a combination of pharmaceutical and non-pharmacological therapy as an essential adjunct to better address the health and welfare of PD patients. We used male adult A53T alpha-synuclein transgenic mice exposed to a ceramic far-infrared blanket. Motor activity was assessed using the rotarod apparatus, and mouse brains were examined to quantify the fluorescence intensities of the immunostained samples. A53T alpha-synuclein transgenic mice had a significantly shorter time stay on the rotating bar than the wild-type mice (B6C3H). The rotarod performance was significantly improved in A53T alpha-synuclein transgenic mice exposed to cFIR as well as B6C3H healthy wild mice exposed to cFIR. There was a significant statistical and substantive increase in the cellular composition of the Striatum and substantia nigra of cFIR-treated mice. Improvement in motor performance is seen in PD mice and wild mice and is associated with increases in cell volume in the substantia nigra and striatum after treatment.
Collapse
Affiliation(s)
- Frederick Robert Carrick
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32827, USA;
- MGH Institute for Health Professions, Boston, MA 02129, USA
- Centre for Mental Health Research in Association, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA
| | | | - Kiminobu Sugaya
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
4
|
Silva M, Gáspari A, Barbieri J, Caruso D, Nogueira J, Andrade A, Moraes A. A pilot study on the effects of far-infrared-emitting fabric on neuromuscular performance of knee extensor and male fertility. Lasers Med Sci 2022; 37:3713-3722. [PMID: 36274079 PMCID: PMC9589584 DOI: 10.1007/s10103-022-03657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the time course of the effects of far-infrared emitting fabric (FIR) on neuromuscular performance of knee extensor over 120 h and to investigate whether the use of FIR affects semen. This is a crossover, randomized, double-blind, and placebo-controlled trial split into neuromuscular and fertility assessments. Four (28.8 ± 4.7 years old) and six (29 ± 3.9 years old) healthy, resistance-trained males completed all neuromuscular and fertility assessments, respectively. In neuromuscular assessments, for five consecutive days, the participants underwent neuromuscular tests in an isokinetic dynamometer (maximal isometric voluntary contraction (MVC) and fatigue test) every 24 h in both conditions (FIR and Placebo). In fertility assessments, participants performed three semen collections: Baseline, FIR, and Placebo. FIR and Placebo collections were performed after five consecutive days of use of the pants. Conventional parameters and sperm DNA fragmentation were evaluated. In the FIR condition, the participants showed significant differences in total work at 96 h (p < 0.001; Cohen’s d = 3.73), 120 h (p = 0.01; Cohen’s d = 2.65), and pre-MVC at 120 h (p = 0.02; Cohen’s d = 2.15) when compared to Placebo. FIR did not significantly (p > 0.05) affect the conventional semen parameters or sperm DNA fragmentation compared to Baseline or Placebo. FIR improved the knee extensor neuromuscular performance of healthy resistance-trained individuals, with 112.4 ± 7.8 h accumulated, and did not affect their seminal parameters (conventional or sperm DNA fragmentation), with 113.1 ± 10.2 h accumulated.
Collapse
Affiliation(s)
- Manoel Silva
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil.
| | - Arthur Gáspari
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| | - João Barbieri
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| | - Danilo Caruso
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| | | | | | - Antônio Moraes
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| |
Collapse
|
5
|
Silva M, Gáspari A, Barbieri J, Barroso R, Figueiredo G, Motta L, Moraes A. Far-infrared-emitting fabric improves neuromuscular performance of knee extensor. Lasers Med Sci 2022; 37:2527-2536. [PMID: 35146580 DOI: 10.1007/s10103-022-03523-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
The aim of this study was to verify if exposure to the far-IR emitted by fabric (FIR) is able to improve the neuromuscular performance of the knee extensors of resistance-trained males regardless of changes of the temperature. It is a crossover, randomized, double-blind, and placebo-controlled trial. Fourteen resistance-trained males (age: 24.3 ± 4 years; body mass: 82.8 ± 11.3 kg; height: 176.3 ± 4.2 cm) were randomly assigned to one of initial conditions: FIR (n = 7) or placebo (n = 7). After 4 days, the participants were submitted to neuromuscular tests in an isokinetic dynamometer (maximal isometric voluntary contraction (MVC) and fatigue test). After a week of washout, participants performed the other condition. We measured peak torque (Nm), total work (J), fatigue index (%), root mean square (mV), median frequency (Hz), and temperature (°C) of thigh. The FIR was worn for 82 ± 19 h before the experimental session, totaling 317 ± 74 kJ of energy irradiation. There was a significant increase (p < 0.05) for pre-MVC (318.5 ± 68.7 Nm) and post-MVC (284.1 ± 58.2 Nm), and a trend (p = 0.055) for significant increase for total work (4,122.2 ± 699.8 J) on FIR condition regardless of none change on temperature and electromyographic (EMG) signals. FIR improved the neuromuscular performance of knee extensors in resistance-trained males regardless of changes on temperature and EMG. The present results suggest that the FIR could optimize the neuromuscular performance with 82 ± 19 h of wear.
Collapse
Affiliation(s)
- Manoel Silva
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil.
| | - Arthur Gáspari
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - João Barbieri
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Renato Barroso
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Gabriel Figueiredo
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Leonardo Motta
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Antônio Moraes
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| |
Collapse
|
6
|
Seo Y, Kim YW, Lee D, Kim D, Kim K, Kim T, Baek C, Lee Y, Lee J, Lee H, Jang G, Jeong W, Choi J, Hwang D, Suh JS, Kim SW, Kim HK, Han J, Bang H, Kim JH, Zhou T, Ko JH. Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:167-175. [PMID: 33602887 PMCID: PMC7893496 DOI: 10.4196/kjpp.2021.25.2.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 12/04/2022]
Abstract
Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.
Collapse
Affiliation(s)
- Yelim Seo
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Donghee Lee
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Donghyeon Kim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Kyoungseo Kim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Taewoo Kim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Changyeob Baek
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Yerim Lee
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Junhyeok Lee
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Hosung Lee
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Geonwoo Jang
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Wonyeong Jeong
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Junho Choi
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Doegeun Hwang
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Jung Soo Suh
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Sun-Woo Kim
- Cardiovascular and Metabolic Disease Center, SMART Marine Therapeutics Center, Inje University, Busan 47392, Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, SMART Marine Therapeutics Center, Inje University, Busan 47392, Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, SMART Marine Therapeutics Center, Inje University, Busan 47392, Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Jung-Ha Kim
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, Seoul 06973, Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
7
|
Lee D, Seo Y, Kim YW, Kim S, Bae H, Choi J, Lim I, Bang H, Kim JH, Ko JH. Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:141-150. [PMID: 30820158 PMCID: PMC6384197 DOI: 10.4196/kjpp.2019.23.2.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
Despite increased evidence of bio-activity following far-infrared (FIR) radiation, susceptibility of cell signaling to FIR radiation-induced homeostasis is poorly understood. To observe the effects of FIR radiation, FIR-radiated materials-coated fabric was put on experimental rats or applied to L6 cells, and microarray analysis, quantitative real-time polymerase chain reaction, and wound healing assays were performed. Microarray analysis revealed that messenger RNA expressions of rat muscle were stimulated by FIR radiation in a dose-dependent manner in amount of 10% and 30% materials-coated. In 30% group, 1,473 differentially expressed genes were identified (fold change [FC] > 1.5), and 218 genes were significantly regulated (FC > 1.5 and p < 0.05). Microarray analysis showed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and cell migration-related pathways were significantly stimulated in rat muscle. ECM and platelet-derived growth factor (PDGF)-mediated cell migration-related genes were increased. And, results showed that the relative gene expression of actin beta was increased. FIR radiation also stimulated actin subunit and actin-related genes. We observed that wound healing was certainly promoted by FIR radiation over 48 h in L6 cells. Therefore, we suggest that FIR radiation can penetrate the body and stimulate PDGF-mediated cell migration through ECM-integrin signaling in rats.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Yelim Seo
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Young-Won Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Seongtae Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyemi Bae
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jeongyoon Choi
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Inja Lim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyoweon Bang
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jung-Ha Kim
- Department of Family Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Jae-Hong Ko
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|