1
|
Lee HJ, Hossain R, Baek CH, Lee CJ, Hwang SC. Intra-Articular Injection of Stem Cells for the Regeneration of Knee Joint Cartilage: a Therapeutic Option for Knee Osteoarthritis - a Narrative Review. Biomol Ther (Seoul) 2025; 33:86-94. [PMID: 39632656 PMCID: PMC11704397 DOI: 10.4062/biomolther.2024.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Current approaches to regulating osteoarthritis primarily focus on symptom management; however, these methods often have significant side effects and may not be suitable for long-term care. As an alternative to conventional treatments, injecting stem cells into knee joint cartilage is a promising option for repairing damaged cartilage. In this review, we outline the general procedure for stem cell treatment of knee joint cartilage regeneration, emphasizing the potential of intra-articular stem cell injections as a therapeutic option for osteoarthritis. We examined and summarized patient evaluation and preparation for knee joint stem cell therapy, stem cell harvesting, stem cell preparation, injection procedures for stem cell therapy, post-injection care and monitoring, potential outcomes of stem cell therapy, and considerations and risks associated with stem cell therapy. Overall, stem cell injections for knee joint cartilage damage represent a promising frontier in orthopedic care. They offer potential benefits such as pain and inflammation reduction, promotion of cartilage repair and regeneration, and the possibility of avoiding more invasive treatments such as knee surgery. Ongoing collaboration among researchers, clinicians, and regulatory organizations is crucial for advancing this field and translating scientific discoveries into effective clinical applications.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Rajib Hossain
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chang-Heon Baek
- Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University College of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University College of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| |
Collapse
|
2
|
Faustino C, Duarte N, Pinheiro L. Triterpenes Drug Delivery Systems, a Modern Approach for Arthritis Targeted Therapy. Pharmaceuticals (Basel) 2023; 17:54. [PMID: 38256888 PMCID: PMC10819636 DOI: 10.3390/ph17010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Arthritis is a major cause of disability. Currently available anti-arthritic drugs, such as disease-modifying anti-rheumatic drugs (DMARDs), have serious side-effects associated with long-term use. Triterpenoids are natural products with known anti-inflammatory properties, and many have revealed efficiency against arthritis both in vitro and in vivo in several animal models, with negligible cytotoxicity. However, poor bioavailability due to low water solubility and extensive metabolism upon oral administration hinder the therapeutic use of anti-arthritic triterpenoids. Therefore, drug delivery systems (DDSs) able to improve the pharmacokinetic profile of triterpenoids and achieve sustained drug release are useful alternatives for targeted delivery in arthritis treatment. Several DDSs have been described in the literature for triterpenoid delivery, including microparticulate and nanoparticulate DDSs, such as polymeric micro and nanoparticles (NPs), polymeric micelles, liposomes, micro and nanoemulsions, and hydrogels. These systems have shown superior therapeutic effects in arthritis compared to the free drugs and are similar to currently available anti-arthritic drugs without significant side-effects. This review focuses on nanocarriers for triterpenoid delivery in arthritis therapy, including osteoarthritis (OA), rheumatoid arthritis (RA) and gout that appeared in the literature in the last ten years.
Collapse
Affiliation(s)
| | - Noélia Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Lídia Pinheiro
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| |
Collapse
|
3
|
Adepoju FO, Duru KC, Li E, Kovaleva EG, Tsurkan MV. Pharmacological Potential of Betulin as a Multitarget Compound. Biomolecules 2023; 13:1105. [PMID: 37509141 PMCID: PMC10377123 DOI: 10.3390/biom13071105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Betulin is a natural triterpene, usually from birch bark, known for its potential wound-healing properties. Despite having a wide range of pharmacological targets, no studies have proposed betulin as a multitarget compound. Betulin has protective effects against cardiovascular and liver diseases, cancer, diabetes, oxidative stress, and inflammation. It reduces postprandial hyperglycemia by inhibiting α-amylase and α-glucosidase activity, combats tumor cells by inducing apoptosis and inhibiting metastatic proteins, and modulates chronic inflammation by blocking the expression of proinflammatory cytokines via modulation of the NFκB and MAPKs pathways. Given its potential to influence diverse biological networks with high target specificity, it can be hypothesized that betulin may eventually become a new lead for drug development because it can modify a variety of pharmacological targets. The summarized research revealed that the diverse beneficial effects of betulin in various diseases can be attributed, at least in part, to its multitarget anti-inflammatory activity. This review focuses on the natural sources, pharmacokinetics, pharmacological activity of betulin, and the multi-target effects of betulin on signaling pathways such as MAPK, NF-κB, and Nrf2, which are important regulators of the response to oxidative stress and inflammation in the body.
Collapse
Affiliation(s)
- Feyisayo O Adepoju
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | - Kingsley C Duru
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Erguang Li
- Medical School, Nanjing University, Nanjing, 22 Hankou Road, Nanjing 210093, China
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | | |
Collapse
|
4
|
Razwinani M, Motaung KS. The influence of friedelin, resinone, tingenone and betulin of compounds on chondrogenic differentiation of porcine adipose-derived mesenchymal stem cells (pADMSCs). Biochimie 2022; 196:234-242. [PMID: 35121053 DOI: 10.1016/j.biochi.2022.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
The study investigated the influence of friedelin, resinone, tingenone and betulin plant-based secondary metabolite compounds on cellular proliferation, extracellular matrix (ECM) components synthesis, expression of chondrogenic markers and maturation of differentiated chondrocytes (cell proliferation and hypertrophy) in porcine adipose-derived mesenchymal stem cells (pADMSCs) undergoing chondrogenic differentiation. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Cyquant assays were used to determine cell proliferation, viability, and total cellular DNA, DMMB (Dimethyl methylene blue) was used for glycosaminoglycan (GAG) synthesis, RT-qPCR for gene expression and histology combined with immunohistochemistry for cartilage ECM proteoglycan deposition. The MTT results showed that friedelin at 37 μM, resinone at 36 μM and betulin at 18 μM with cell viability of above 100% compared to control. Tingenone at 37 μM showed cell viability of about 76%. These concentrations were considered the most effective with no toxicity effect on the cells and were further analysed with TGF-β3 (10 ng/mL) as a positive control. The results showed a high synthesis of DNA with friedelin on day 14. There was up-regulation of SOX 9, Col II and Col X with friedelin and resinone at day 14 with the significance of p < 0.01. Pellet from friedelin, resinone and tingenone showed more staining of the matrix for Safranin-O and Toluidine blue at day 14. Immunohistostaining of collagen type X (COL-10) showed more stain intensity at friedelin and resinone on day 21. These results provided new knowledge on the potential use of natural isolated secondary metabolites compounds as inducers for chondrogenic and bone differentiation.
Collapse
Affiliation(s)
- Mapula Razwinani
- Durban University of Technology, Technology Transfer and Innovation, Steve Biko Campus, Durban, South Africa
| | - Keolebogile Shirley Motaung
- Durban University of Technology, Technology Transfer and Innovation, Steve Biko Campus, Durban, South Africa.
| |
Collapse
|
5
|
Ren C, Jin J, Hu W, Chen Q, Yang J, Wu Y, Zhou Y, Sun L, Gao W, Zhang X, Tian N. Betulin Alleviates the Inflammatory Response in Mouse Chondrocytes and Ameliorates Osteoarthritis via AKT/Nrf2/HO-1/NF-κB Axis. Front Pharmacol 2021; 12:754038. [PMID: 34721040 PMCID: PMC8548689 DOI: 10.3389/fphar.2021.754038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease featuring the degeneration, destruction, and ossification of cartilage. Inflammation which may facilitate OA occurrence and development is considered as the main pathological factor. Betulin, a natural product extracted from birch bark, has been commonly used for inflammation treatment; however, its role in OA remains unclear. This study is aimed to explore whether betulin can suppress IL-1β–induced inflammation in chondrocytes and alleviate OA in vitro and in vivo. In in vitro studies, the generation of pro-inflammatory factors, such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), prostaglandin E2 (PGE2), and nitric oxide (NO), was assessed using the enzyme-linked immunosorbent assay (ELISA) and Griess reaction. As revealed by results, betulin inhibited the expression of pro-inflammatory mediators. In addition, the protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), matrix metalloproteinase (MMP-13), thrombospondin motifs 5 (ADAMTS5), Collagen II, and Aggrecan were quantified using Western blot analysis. We found that betulin could inhibit the generation of COX-2 and iNOS induced by IL-1β, indicating that betulin has anti-inflammatory effects in chondrocytes. Furthermore, betulin downregulates the expression of MMP-13 and ADAMTS-5 and upregulates the expression of Collagen II and Aggrecan, indicating that it can inhibit the degradation of the extracellular matrix. In mechanism, betulin activated the AKT/Nrf2 pathway and inhibited the phosphorylation of p65. In in vivo studies, administration of betulin in vivo could inhibit cartilage destruction and inflammatory progression. Therefore, these findings suggest that betulin may alleviate IL-1β–induced OA via the AKT/Nrf2/HO-1/NF-κB signal axis, and betulin may be a potential drug for the treatment of OA.
Collapse
Affiliation(s)
- Chenghao Ren
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Jie Jin
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Wei Hu
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Qi Chen
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Jian Yang
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Liaojun Sun
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| |
Collapse
|
6
|
Betulin suppresses TNF-α and IL-1β production in osteoarthritis synovial fibroblasts by inhibiting the MEK/ERK/NF-κB pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases. Int J Mol Sci 2020; 21:ijms21144931. [PMID: 32668590 PMCID: PMC7404046 DOI: 10.3390/ijms21144931] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis that occurs in an aged population. It affects any joints in the body and degenerates the articular cartilage and the subchondral bone. Despite the pathophysiology of OA being different, cartilage resorption is still a symbol of osteoarthritis. Matrix metalloproteinases (MMPs) are important proteolytic enzymes that degrade extra-cellular matrix proteins (ECM) in the body. MMPs contribute to the turnover of cartilage and its break down; their levels have increased in the joint tissues of OA patients. Application of chondroprotective drugs neutralize the activities of MMPs. Natural products derived from herbs and plants developed as traditional medicine have been paid attention to, due to their potential biological effects. The therapeutic value of natural products in OA has increased in reputation due to their clinical impact and insignificant side effects. Several MMPs inhibitor have been used as therapeutic drugs, for a long time. Recently, different types of compounds were reviewed for their biological activities. In this review, we summarize numerous natural products for the development of MMPs inhibitors in arthritic diseases and describe the major signaling targets that were involved for the treatments of these destructive joint diseases.
Collapse
|
8
|
Feng S, Cong H, Ji L. Salvianolic Acid A Exhibits Anti-Inflammatory and Antiarthritic Effects via Inhibiting NF-κB and p38/MAPK Pathways. Drug Des Devel Ther 2020; 14:1771-1778. [PMID: 32440102 PMCID: PMC7217308 DOI: 10.2147/dddt.s235857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Osteoarthritis (OA), a chronic joint disease, combines with massive inflammation and plays a vital role in cartilage degeneration. The main strategy in clinic is controlling inflammation, thereby treating osteoarthritis. Salvianolic acid A (SAA) is a type of phenolic acid, derived from a traditional chinese herbal medicine Danshen that is extensively used clinically. METHODS AND RESULTS We observed the anti-inflammatory and antiarthritic effects of SAA in IL-1β-stimulated cells. We found that SAA evidently decreased the expression of mainly inflammatory factors, exerted the remarkable effects of anti-inflammation and anti-arthritis. Furthermore, SAA inhibited the expression of Matrix metalloproteinases (MMP1, MMP13), and ADAMTS-5 and raised the synthesis of collagen II and aggrecan. Additionally, the results indicated that SAA gave rise to the effects by down-regulation of NF-κB and p38/MAPK pathways. DISCUSSION Our study demonstrates that SAA may be a promising anti-inflammatory for the treatment of OA in clinic.
Collapse
Affiliation(s)
- Shuang Feng
- The Second People’s Hospital of Nantong, Nantong, Jiangsu, People’s Republic of China
| | - Hui Cong
- The Second People’s Hospital of Nantong, Nantong, Jiangsu, People’s Republic of China
| | - Lei Ji
- The Second People’s Hospital of Nantong, Nantong, Jiangsu, People’s Republic of China
| |
Collapse
|
9
|
Kang YH, Lee HJ, Lee CJ, Park JS. Natural Products as Sources of Novel Drug Candidates for the Pharmacological Management of Osteoarthritis: A Narrative Review. Biomol Ther (Seoul) 2019; 27:503-513. [PMID: 31646842 PMCID: PMC6824629 DOI: 10.4062/biomolther.2019.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis is a chronic degenerative articular disorder. Formation of bone spurs, synovial inflammation, loss of cartilage, and underlying bone restructuring have been reported to be the main pathologic characteristics of osteoarthritis symptoms. The onset and progression of osteoarthritis are attributed to various inflammatory cytokines in joint tissues and fluids that are produced by chondrocytes and/or interact with chondrocytes, as well as to low-grade inflammation in intra-articular tissues. Disruption of the equilibrium between the synthesis and degradation of the cartilage of the joint is the major cause of osteoarthritis. Hence, developing a promising pharmacological tool to restore the equilibrium between the synthesis and degradation of osteoarthritic joint cartilage can be a useful strategy for effectively managing osteoarthritis. In this review, we provide an overview of the research results pertaining to the search for a novel candidate agent for osteoarthritis management via restoration of the equilibrium between cartilage synthesis and degradation. We especially focused on investigations of medicinal plants and natural products derived from them to shed light on the potential pharmacotherapy of osteoarthritis.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Department of Oral Maxillofacial Surgery, Gyeongsang National University School of Medicine and Changwon Gyeongsang National University Hospital, Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin-Sung Park
- Department of Orthopaedic Surgery and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| |
Collapse
|
10
|
Benvenuto M, Mattera R, Miele MT, Giganti MG, Tresoldi I, Albonici L, Manzari V, Modesti A, Masuelli L, Bei R. Effects of a natural multi-component compound formulation on the growth, morphology and extracellular matrix production of human adult dermal fibroblasts. Exp Ther Med 2019; 18:2639-2647. [PMID: 31572512 PMCID: PMC6755435 DOI: 10.3892/etm.2019.7872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/16/2019] [Indexed: 12/05/2022] Open
Abstract
The extracellular matrix (ECM) creates a tissue microenvironment able to regulate cellular signaling. The loss of ECM plasticity is associated with several pathologies, especially those involving chronic inflammation, therefore, the ECM represents a potential therapeutic target for certain conditions. The present study investigated the effects of a natural multi-component compound formulation, Galium-Heel®, on the growth, morphology and ECM production of human dermal fibroblasts (HDF). The effects of the formulation on HDF growth and morphology were assessed by sulforhodamine B assay, trypan blue exclusion staining, FACS and ultrastructural analyses. The effect of the compound on reactive oxygen species production by HDF was performed by dichlorofluorescin diacetate assay. The expression of ECM components, matrix metalloproteinases (MMPs) and signaling molecules was analyzed by western blot analysis. The present results demonstrated that Galium-Heel® did not significantly affect HDF growth, survival, cell cycle or morphology indicating the biocompatibility of the formulation. The formulation demonstrated antioxidant activity. Galium-Heel® was able to modulate ECM by regulating collagens (type I and III) and MMPs-3 and −7 expression. In addition, the formulation was able to regulate molecules involved in TGF-β signalling, including mitogen activated kinase-like protein, GLI family zinc finger 2 and pro-survival proteins such as AKT. The present results demonstrating the effects of a natural multi-component compound on ECM composition, highlighted the possibility of pharmacologically modulating ECM molecules. The recovery and the maintenance of ECM homeostasis might be considered as a potential therapeutic goal to ameliorate pathological conditions.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome 'Sapienza', I-00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| |
Collapse
|
11
|
Khandaker M, Akter S, Imam MZ. Trichosanthes dioica Roxb.: A vegetable with diverse pharmacological properties. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|