1
|
Aguayo-Morales H, Poblano J, Berlanga L, Castillo-Tobías I, Silva-Belmares SY, Cobos-Puc LE. Plant Antioxidants: Therapeutic Potential in Cardiovascular Diseases. COMPOUNDS 2024; 4:479-502. [DOI: 10.3390/compounds4030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cardiovascular diseases (CVDs) are a global health problem. The mortality associated with them is one of the highest. Essentially, CVDs occur when the heart or blood vessels are damaged. Oxidative stress is an imbalance between the production of reactive oxygen species (free radicals) and antioxidant defenses. Increased production of reactive oxygen species can cause cardiac and vascular injuries, leading to CVDs. Antioxidant therapy has been shown to have beneficial effects on CVDs. Plants are a rich source of bioactive antioxidants on our planet. Several classes of these compounds have been identified. Among them, carotenoids and phenolic compounds are the most potent antioxidants. This review summarizes the role of some carotenoids (a/β-carotene, lycopene and lutein), polyphenols such as phenolic acids (caffeic, p-coumaric, ferulic and chlorogenic acids), flavonoids (quercetin, kaempferol and epigallocatechin gallate), and hydroxytyrosol in mitigating CVDs by studying their biological antioxidant mechanisms. Through detailed analysis, we aim to provide a deeper understanding of how these natural compounds can be integrated into cardiovascular health strategies to help reduce the overall burden of CVD.
Collapse
Affiliation(s)
- Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Joan Poblano
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Lia Berlanga
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Ileana Castillo-Tobías
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Sonia Yesenia Silva-Belmares
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Luis E. Cobos-Puc
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina Con Ing, José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| |
Collapse
|
2
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
3
|
Balaha M, De Filippis B, Cataldi A, di Giacomo V. CAPE and Neuroprotection: A Review. Biomolecules 2021; 11:biom11020176. [PMID: 33525407 PMCID: PMC7911454 DOI: 10.3390/biom11020176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Propolis, a product of the honey bee, has been used in traditional medicine for many years. A hydrophobic bioactive polyphenolic ester, caffeic acid phenethyl ester (CAPE), is one of the most extensively investigated active components of propolis. Several studies have indicated that CAPE has a broad spectrum of pharmacological activities as anti-oxidant, anti-inflammatory, anti-viral, anti-fungal, anti-proliferative, and anti-neoplastic properties. This review largely describes CAPE neuroprotective effects in many different conditions and summarizes its molecular mechanisms of action. CAPE was found to have a neuroprotective effect on different neurodegenerative disorders. At the basis of these effects, CAPE has the ability to protect neurons from several underlying causes of various human neurologic diseases, such as oxidative stress, apoptosis dysregulation, and brain inflammation. CAPE can also protect the nervous system from some diseases which negatively affect it, such as diabetes, septic shock, and hepatic encephalopathy, while numerous studies have demonstrated the neuroprotective effects of CAPE against adverse reactions induced by different neurotoxic substances. The potential role of CAPE in protecting the central nervous system (CNS) from secondary injury following various CNS ischemic conditions and CAPE anti-cancer activity in CNS is also reviewed. The structure–activity relationship of CAPE synthetic derivatives is discussed as well.
Collapse
Affiliation(s)
- Marwa Balaha
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (B.D.F.); (V.d.G.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, 33516 Kafr El Sheikh, Egypt
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (B.D.F.); (V.d.G.)
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (B.D.F.); (V.d.G.)
- Correspondence: ; Tel.: +39-0871-355-4467
| | - Viviana di Giacomo
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (B.D.F.); (V.d.G.)
| |
Collapse
|
4
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
5
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
6
|
Menezes da Silveira CCS, Luz DA, da Silva CCS, Prediger RDS, Martins MD, Martins MAT, Fontes-Júnior EA, Maia CSF. Propolis: A useful agent on psychiatric and neurological disorders? A focus on CAPE and pinocembrin components. Med Res Rev 2020; 41:1195-1215. [PMID: 33174618 DOI: 10.1002/med.21757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
Propolis consists of a honeybee product, with a complex mix of substances that have been widely used in traditional medicine. Among several compounds present in propolis, caffeic acid phenethyl ester (CAPE), and pinocembrin emerge as two principal bioactive compounds, with benefits in a variety of body systems. In addition to its well-explored pharmacological properties, neuropharmacological activities have been poorly discussed. In an unprecedented way, the present review addresses the current finding on the promising therapeutic purposes of propolis, focusing on CAPE and pinocembrin, highlighting its use on neurological disturbance, as cerebral ischemia, neuroinflammation, convulsion, and cognitive impairment, as well as psychiatric disorders, such as anxiety and depression. In addition, we provide a critical analysis, discussion, and systematization of the molecular mechanisms which underlie these central nervous system effects. We hypothesize that the pleiotropic action of CAPE and pinocembrin, per se or associated with other substances present in propolis may result in the therapeutic activities reported. Inhibition of the pro-inflammatory cascade, antioxidant activity, and positive neurotrophic modulatory effects consist of the main molecular targets attributed to CAPE and pinocembrin in health benefits.
Collapse
Affiliation(s)
- Cinthia C S Menezes da Silveira
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Diandra A Luz
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Carla C S da Silva
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Rui D S Prediger
- Department of Pharmacology, Biological Science Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Manoela D Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marco A T Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Enéas A Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Cristiane S F Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
7
|
Evaluation of the neuroprotective potential of caffeic acid phenethyl ester in a cellular model of Parkinson's disease. Eur J Pharmacol 2020; 883:173342. [PMID: 32634439 DOI: 10.1016/j.ejphar.2020.173342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, and oxidative stress and mitochondrial dysfunction play a major role in the pathogenesis of PD. Since conventional therapeutics are not sufficient for the treatment of PD, the development of new agents with anti-oxidant potential is crucial. Caffeic Acid Phenethyl Ester (CAPE), a biologically active flavonoid of propolis, possesses several biological properties such as immunomodulatory, anti-inflammatory and anti-oxidative. In the present study, we investigated the neuroprotective effects of CAPE against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y cells. The neuroprotective effects were detected by using cell viability, Annexin V, Hoechst staining, total caspase activity, cell cycle, as well as western blotting. Besides, the anti-oxidative activity was measured by the production of reactive oxygen species and mitochondrial function was determined by measurement of mitochondrial membrane potential (ΔΨm). We found that CAPE significantly increased cell viability and decreased apoptotic cell death (~20%) after 150 μM 6-OHDA exposure following 24 h. 1.25 μM CAPE also prevented 6-OHDA-induced changes in condensed nuclear morphology. Furthermore, treatment with 1.25 μM CAPE increased mitochondrial membrane potential in 6-OHDA-exposed cells. CAPE inhibited 6-OHDA-induced caspase activity (~2 fold) and production of reactive oxygen species. In addition, 150 μM 6-OHDA-induced down-regulation of Bcl-2 and Akt levels and up-regulation of Bax and cleaved caspase-9/caspase-9 levels were partially restored by 1.25 μM CAPE treatment. These results revealed a neuroprotective potential of CAPE against 6-OHDA-induced apoptosis in an in vitro PD model and may be a potential therapeutic candidate for the prevention of neurodegeneration in Parkinson's Disease.
Collapse
|
8
|
Emeka P, Morsy M, Alhaider I, Chohan M. Protective effect of caffeic acid phenethyl ester against acute and subchronic mice cardiotoxicity induced by cyclophosphamide alone or plus naproxen. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_159_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|