1
|
Dong L, Cao Y, Pan X, Lin L, Luo X, Dunzhu N, Hu J. Historical sedimentary and evolutionary characteristics of POPs and EDCs in typical regions of the three Gorges reservoir, China. Heliyon 2024; 10:e32920. [PMID: 38948041 PMCID: PMC11211899 DOI: 10.1016/j.heliyon.2024.e32920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
The historical sedimentary and evolutionary characteristics of persistent organic pollutants and endocrine disruptors in typical regions of the Three Gorges Reservoir are scarcely studied. Herein, the 96-year data on contaminated sediment history were reconstructed using Caesium 137 isotope dating. Polychlorinated biphenyl concentrations in the involved sediment cores ranged from non-detected (ND) to 11.39 ng/g. The concentrations of polycyclic aromatic hydrocarbons ranged from ND to 2075.20 ng/g and peaked in the 1970s owing to natural, agricultural and human activities. Further, phthalate esters (PAEs) and heavy metals (HMs) were detected at concentrations ranging from ND to 589.2 ng/g and 12.10-93.67 μg/g, respectively, with highest values recorded in the 1980s owing to rapid industrialisation and insufficient management during China's early reform and development stages. PAE and HM concentrations have increased in recent years, suggesting the need to focus on industrial and agricultural activities that have caused this impact. Although current pollutant concentrations in sediments do not pose a risk to the aquatic ecosystem, they should be continuously monitored.
Collapse
Affiliation(s)
- Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, PR China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, PR China
- Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan, 430010, PR China
| | - Yueqi Cao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, PR China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, PR China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, PR China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, PR China
- Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan, 430010, PR China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, PR China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, PR China
- Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan, 430010, PR China
| | - Xiaohe Luo
- The Resettlement Affairs Center for Large and Medium-Sized Water Conservancy and Hydropower Projects in Xizang Autonomous Region, Lhasa 850000, P.R. China
| | - Nima Dunzhu
- The Resettlement Affairs Center for Large and Medium-Sized Water Conservancy and Hydropower Projects in Xizang Autonomous Region, Lhasa 850000, P.R. China
| | - Jiancheng Hu
- School of Environmental Studies, Hubei Polytechnic University, Huangshi 435003, P.R. China
| |
Collapse
|
2
|
Son JY, Khuman SN, Park MK, Lee HY, Kim CS, Lee IS, Choi SD. Distributions of PCDD/Fs, PCBs, and PCNs in coastal sediments collected from major industrial bays in South Korea. MARINE POLLUTION BULLETIN 2024; 200:116160. [PMID: 38377865 DOI: 10.1016/j.marpolbul.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs) were assessed in coastal sediments from industrial bays in South Korea to evaluate the pollution levels and their environmental impact. The mean sediment concentrations of Σ17 PCDD/Fs, Σ18 PCBs, and Σ15 PCNs were 198 ± 140, 3427 ± 7037, and 85 ± 336 pg/g dw, respectively. Generally, pollutant concentrations in the inner bay were higher than those in the outer bay, indicating the influence of industrial emissions and harbor activities. The primary sources were identified as steel manufacturing and wastewater treatment plants for PCDD/Fs, harbor and shipbuilding activities for PCBs, and combustion-related sources for PCNs. Notably, PCDD/F concentrations exceeded sediment guideline values. The combined effects of PCDD/Fs and PCBs demonstrated adverse impacts on aquatic organisms. Hence, the release of toxic pollutants into the marine environment could have potential biological effects due to the combined impact of these various compounds.
Collapse
Affiliation(s)
- Ji-Young Son
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sanjenbam Nirmala Khuman
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Kyu Park
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chul-Su Kim
- UNIST Environmental Analysis Center (UEAC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - In-Seok Lee
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Tongyeong 53085, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; UNIST Environmental Analysis Center (UEAC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Jeong H, Kim KT, Kim ES, Ra K, Lee SY. Sediment Quality Assessment for Heavy Metals in Streams Around the Shihwa Lake. ACTA ACUST UNITED AC 2016. [DOI: 10.7846/jkosmee.2016.19.1.25] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|