1
|
Orts JM, Naranjo E, Pina S, Orts A, Muñoz-Martí M, Tejada M, Parrado J. Polyurethane waste valorization: A Two-Phase process using Ozonization and Rhodococcus pyridinivorans fermentation for biofertilizer production. BIORESOURCE TECHNOLOGY 2025; 416:131814. [PMID: 39542054 DOI: 10.1016/j.biortech.2024.131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
A circular economy process has been developed to convert polyurethane waste into biofertilizing microorganisms through a sequential chemical/biological process. The chemical phase involves the complete depolymerization of polyurethane using ozone attack, generating an aqueous extract (OLE) composed of small, bioavailable molecules such as polyols, isocyanate derivatives, and carboxylic acids. The biological phase utilizes OLE for the generation of biomass with biofertilizing functional activity through Rhodococcus pyridinivorans fermentation. The metabolic-proteomic expression during the biodegradation of OLE involves the synthesis of numerous enzymes such as cutinases, hydrolases, proteases, esterases and oxidoreductases, which participate in the degradation of chemical compounds like benzene derivatives, phenols, or plastic polymers. OLE has been converted into microorganisms with biofertilizing properties, including nitrogen fixation, phytohormone production and siderophores. This process contributes to sustainability by diverting polyurethane waste from landfills, reducing the environmental impact of chemical fertilizers and promoting a more sustainable agricultural system.
Collapse
Affiliation(s)
- Jose M Orts
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, University of Seville, St./Prof. García Gonzalez 2, 41012 Seville, Spain.
| | - Emilia Naranjo
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, University of Seville, St./Prof. García Gonzalez 2, 41012 Seville, Spain
| | - Susana Pina
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, University of Seville, St./Prof. García Gonzalez 2, 41012 Seville, Spain
| | - Angel Orts
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, University of Seville, St./Prof. García Gonzalez 2, 41012 Seville, Spain
| | - Marta Muñoz-Martí
- Materials Area, Technology Centre of Furniture and Wood of the Region of Murcia (CETEM), St./ Perales, no number, 30510 Yecla, Murcia, Spain
| | - Manuel Tejada
- Environmental Edaphologic Research Group, Department of Crystallography, Mineralogy and Agricultural Chemistry E.T.S.I.A. University of Seville, Seville, Spain
| | - Juan Parrado
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, University of Seville, St./Prof. García Gonzalez 2, 41012 Seville, Spain
| |
Collapse
|
2
|
Khatua S, Simal-Gandara J, Acharya K. Myco-remediation of plastic pollution: current knowledge and future prospects. Biodegradation 2024; 35:249-279. [PMID: 37665521 PMCID: PMC10950981 DOI: 10.1007/s10532-023-10053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
To date, enumerable fungi have been reported to participate in the biodegradation of several notorious plastic materials following their isolation from soil of plastic-dumping sites, marine water, waste of mulch films, landfills, plant parts and gut of wax moth. The general mechanism begins with formation of hydrophobin and biofilm proceding to secretion of specific plastic degarding enzymes (peroxidase, hydrolase, protease and urease), penetration of three dimensional substrates and mineralization of plastic polymers into harmless products. As a result, several synthetic polymers including polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and/or bio-degradable plastics have been validated to deteriorate within months through the action of a wide variety of fungal strains predominantly Ascomycota (Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium spp.). Understanding the potential and mode of operation of these organisms is thus of prime importance inspiring us to furnish an up to date view on all the presently known fungal strains claimed to mitigate the plastic waste problem. Future research henceforth needs to be directed towards metagenomic approach to distinguish polymer degrading microbial diversity followed by bio-augmentation to build fascinating future of waste disposal.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004, Ourense, Spain.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
3
|
Skleničková K, Suchopárová E, Abbrent S, Pokorný V, Kočková O, Nevoralová M, Cajthaml T, Strejček M, Uhlík O, Halecký M, Beneš H. Biodegradation of aliphatic polyurethane foams in soil: Influence of amide linkages and supramolecular structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169062. [PMID: 38061651 DOI: 10.1016/j.scitotenv.2023.169062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
Polyurethane (PU) foams are classified as physically nonrecyclable thermosets. The current effort of sustainable and eco-friendly production makes it essential to explore methods of better waste management, for instance by modifying the structure of these frequently used polymers to enhance their microbial degradability. The presence of ester links is known to be a crucial prerequisite for the biodegradability of PU foams. However, the impact of other hydrolysable groups (urethane, urea and amide) occurred in PU materials, as well as the supramolecular structure of the PU network and the cellular morphology of PU foams, is still relatively unexplored. In this work, fully aliphatic PU foams with and without hydrolyzable amide linkages were prepared and their aerobic biodegradation was investigated using a six-month soil burial test. Besides the variable chemical composition of the PU foams, the influence of their different supramolecular arrangement and cellular morphologies on the extent of biodegradation was also evaluated. Throughout the soil burial test, the release of carbon dioxide, and enzyme activities of proteases, esterases, and ureases were measured. At the same time, phospho-lipid fatty acids (PLFA) analysis was conducted together with an assessment of microbial community composition achieved by analysing the genetic information from the 16S rRNA gene and ITS2 region sequencing. The results revealed a mineralization rate of 30-50 % for the PU foams, indicating a significant level of degradation as well as indicating that PU foams can be utilized by soil microorganisms as a source of both energy and nutrients. Importantly, microbial biomass remained unaffected, suggesting that there was no toxicity associated with the degradation products of the PU foams. It was further confirmed that ester linkages in PU foam structure were easily enzymatically cleavable, while amide linkages were not prone to degradation by soil microorganisms. In addition, it was shown that the presence of amide linkages in PU foam leads to a change in the supramolecular network arrangement due to increased content of hard segments, which in turn reduces the biodegradability of PU foam. These findings show that it is important to consider both chemical composition and supramolecular/macroscopic structure when designing new PU materials in an effort to develop environmentally friendly alternatives.
Collapse
Affiliation(s)
- Kateřina Skleničková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic; Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Eliška Suchopárová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Sabina Abbrent
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Václav Pokorný
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Olga Kočková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Martina Nevoralová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, Prague 4 142 20, Czech Republic
| | - Michal Strejček
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Ondřej Uhlík
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Martin Halecký
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic.
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic.
| |
Collapse
|
4
|
Ivanushkina N, Aleksanyan K, Rogovina S, Kochkina G. The Use of Mycelial Fungi to Test the Fungal Resistance of Polymeric Materials. Microorganisms 2023; 11:251. [PMID: 36838216 PMCID: PMC9959004 DOI: 10.3390/microorganisms11020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
There are two main themes in the research on the biodegradation of industrial materials by mycelial fungi. The challenge of reducing environmental pollution necessitates the creation of biodegradable polymers that allow microorganisms, including mycelial fungi, to degrade them to low-molecule soluble substances. Additionally, to minimize the biodegradation of industrial materials while they are operating in the environment, there is a need to produce fungi-resistant polymer compositions. The fungal resistance of industrial materials and products can be assessed using a specific set of mycelial fungi cultures. Test cultures selected for this purpose are supported in the All-Russian Collection of Microorganisms (VKM). This review addresses the principle of culture selection to assess the fungal resistance of industrial materials and evaluates the results of the tests using these cultures.
Collapse
Affiliation(s)
- Natalya Ivanushkina
- All-Russian Collection of Microorganisms (VKM), Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kristine Aleksanyan
- Semenov Federal Research Center for Chemical Physics, Department of Polymers and Composite Materials, Russian Academy of Sciences,119991 Moscow, Russia
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Svetlana Rogovina
- Semenov Federal Research Center for Chemical Physics, Department of Polymers and Composite Materials, Russian Academy of Sciences,119991 Moscow, Russia
| | - Galina Kochkina
- All-Russian Collection of Microorganisms (VKM), Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
5
|
Hao X, Yang K, Zhang D, Lu L. Insight into Degrading Effects of Two Fungi on Polyurethane Coating Failure in a Simulated Atmospheric Environment. Polymers (Basel) 2023; 15:328. [PMID: 36679209 PMCID: PMC9866036 DOI: 10.3390/polym15020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Two different fungi, Talaromyces funiculosus (T. funiculosus) and Phanerochaete chrysosporium (P. chrysosporium), were collected from the Xishuangbanna atmospheric corrosion site and incubated on a polyurethane (PU) coating at 30 °C for two weeks under 95% relative humidity (RH). The biodegrading effects of these fungi on the coating failure were investigated from aspects of metabolism and electrochemistry. The results showed that T. funiculosus contributed more to the degradation of the PU coating failure than P. chrysosporium, and two factors played dominant roles. First, the weight of the T. funiculosus mycelium was nearly 3 times more than that of P. chrysosporium, indicating there was more substrate mycelium of T. funiculosus deep into the coatings to get more nutrition in atmospheric during colonization. Second, T. funiculosus secreted carboxylic acids, such as citric, propanoic, succinic, and tartaric acids, and accelerated the hydrolysis of the ester and urethane bonds in the PU coatings. As a result, the mycelium of T. funiculosus readily penetrated the interface of the coating and substrate resulting in a rapid proliferation. Thus, the |Z|0.01Hz value of the coating decreased to 5.1 × 104 Ω·cm2 after 14 days of colonization by T. funiculosus while the value remained at 7.2 × 107 Ω·cm2 after colonization by P. chrysosporium. These insights suggest that the biodegradation process in simulated atmospheric environments would provide theoretical guidance and directions for the design of antifungal PU coatings.
Collapse
Affiliation(s)
- Xiangping Hao
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kexin Yang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Dawei Zhang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Lu
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Ejdys E, Kulesza K, Wiśniewski P, Pajewska M, Sucharzewska E. Window seals as a source of yeast contamination. Lett Appl Microbiol 2022; 75:1021-1027. [DOI: 10.1111/lam.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/26/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Affiliation(s)
- E. Ejdys
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology University of Warmia and Mazury in Olsztyn Oczapowskiego 1A 10‐719 Olsztyn Poland
| | - K. Kulesza
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology University of Warmia and Mazury in Olsztyn Oczapowskiego 1A 10‐719 Olsztyn Poland
| | - P. Wiśniewski
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology University of Warmia and Mazury in Olsztyn Oczapowskiego 1A 10‐719 Olsztyn Poland
| | - M.S. Pajewska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology University of Warmia and Mazury in Olsztyn Oczapowskiego 1A 10‐719 Olsztyn Poland
| | - E. Sucharzewska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology University of Warmia and Mazury in Olsztyn Oczapowskiego 1A 10‐719 Olsztyn Poland
| |
Collapse
|
7
|
Temporiti MEE, Nicola L, Nielsen E, Tosi S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022; 10:1180. [PMID: 35744698 PMCID: PMC9230134 DOI: 10.3390/microorganisms10061180] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Plastic pollution is a growing environmental problem, in part due to the extremely stable and durable nature of this polymer. As recycling does not provide a complete solution, research has been focusing on alternative ways of degrading plastic. Fungi provide a wide array of enzymes specialized in the degradation of recalcitrant substances and are very promising candidates in the field of plastic degradation. This review examines the present literature for different fungal enzymes involved in plastic degradation, describing their characteristics, efficacy and biotechnological applications. Fungal laccases and peroxidases, generally used by fungi to degrade lignin, show good results in degrading polyethylene (PE) and polyvinyl chloride (PVC), while esterases such as cutinases and lipases were successfully used to degrade polyethylene terephthalate (PET) and polyurethane (PUR). Good results were also obtained on PUR by fungal proteases and ureases. All these enzymes were isolated from many different fungi, from both Basidiomycetes and Ascomycetes, and have shown remarkable efficiency in plastic biodegradation under laboratory conditions. Therefore, future research should focus on the interactions between the genes, proteins, metabolites and environmental conditions involved in the processes. Further steps such as the improvement in catalytic efficiency and genetic engineering could lead these enzymes to become biotechnological applications in the field of plastic degradation.
Collapse
Affiliation(s)
- Marta Elisabetta Eleonora Temporiti
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Lidia Nicola
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| | - Solveig Tosi
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| |
Collapse
|
8
|
Delangiz N, Aliyar S, Pashapoor N, Nobaharan K, Asgari Lajayer B, Rodríguez-Couto S. Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges? CHEMOSPHERE 2022; 294:133709. [PMID: 35074325 DOI: 10.1016/j.chemosphere.2022.133709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Increasing world population and industrial activities have enhanced anthropogenic pollution, plastic pollution being especially alarming. So, plastics should be recycled and/or make them biodegradable. Chemical and physical remediating methods are usually energy consuming and costly. In addition, they are not ecofriendly and usually produce toxic byproducts. Bioremediation is a proper option as it is cost-efficient and environmentally friendly. Plastic production and consumption are increasing daily, and, as a consequence, more microorganisms are exposed to these nonbiodegradable polymers. Therefore, investigating new efficient microorganisms and increasing the knowledge about their biology can pave the way for efficient and feasible plastic bioremediation processes. In this sense, omics, systems biology and bioinformatics are three important fields to analyze the biodegradation pathways in microorganisms. Based on the above-mentioned technologies, researchers can engineer microorganisms with specific desired properties to make bioremediation more efficient.
Collapse
Affiliation(s)
- Nasser Delangiz
- Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Sajad Aliyar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Neda Pashapoor
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
9
|
Abstract
With continuous development of biodegradable polymers, new areas of applications are intensively researched. Modifications of these polymers are commonly conducted by an extrusion compounding process. While additives are changing desired properties, biodegradability of such composites can be deteriorated. The aim of the work is to investigate a novel, functional, organic additive, riboflavin (vitamin B-2), in terms of thermal stability, extrusion processability, wettability, surface energy, especially biodegradability, and when compounded with PLA. Additionally, a comparison of unmodified PLA resin, as well as PLA-modified with inorganic talc—which is known for its nucleation promotion in a variety of polymers—to PLA with riboflavin, was presented. Research reveals the outstanding thermal stability of riboflavin and the sufficient extrusion process properties with no significant changes of wettability and, surprisingly, a significant degradation rate as compared to pure PLA or and PLA with talc. The obtained results do not exclude further modifications of PLA depending on the target application, e.g., antimicrobial agents, flame retardants, etc.
Collapse
|
10
|
Dhanraj ND, Hatha AAM, Jisha MS. Biodegradation of petroleum based and bio-based plastics: approaches to increase the rate of biodegradation. Arch Microbiol 2022; 204:258. [PMID: 35419707 DOI: 10.1007/s00203-022-02883-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023]
Abstract
Plastic production and consumption are on the rise due to their variety of uses. Plastics often accumulate in the environment and pose a risk due to the lack of a viable strategy for their safe disposal. Even prohibiting plastic covers does not solve the problems of plastic waste generation. Plastics are degraded by various microbes, although at a very slow rate. In addition, efforts to enhance plastic degradation efficiency by microbes are rarely addressed. This paper describes the biodegradation of both petroleum-based and bio-based plastics, as well as studies on plastic biodegradation in both the Indian and global scenarios. This paper also discusses the biochemical and molecular aspects of plastic biodegradation, which are essential since they disclose more about how bacteria break down plastics. We also shed light on initiatives to boost biodegradation rates using various strategies in this article. Understanding the enzymes and genes involved in biodegradation would also help researchers figure out how to use them to enhance microorganism's ability to degrade plastic.
Collapse
Affiliation(s)
- N D Dhanraj
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A A Mohamed Hatha
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India.
| |
Collapse
|
11
|
Srikanth M, Sandeep TSRS, Sucharitha K, Godi S. Biodegradation of plastic polymers by fungi: a brief review. BIORESOUR BIOPROCESS 2022; 9:42. [PMID: 38647755 PMCID: PMC10991219 DOI: 10.1186/s40643-022-00532-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
Plastic polymers are non-degradable solid wastes that have become a great threat to the whole world and degradation of these plastics would take a few decades. Compared with other degradation processes, the biodegradation process is the most effective and best way for plastic degradation due to its non-polluting mechanism, eco-friendly nature, and cost-effectiveness. Biodegradation of synthetic plastics is a very slow process that also involves environmental factors and the action of wild microbial species. In this plastic biodegradation, fungi play a pivotal role, it acts on plastics by secreting some degrading enzymes, i.e., cutinase`, lipase, and proteases, lignocellulolytic enzymes, and also the presence of some pro-oxidant ions can cause effective degradation. The oxidation or hydrolysis by the enzyme creates functional groups that improve the hydrophilicity of polymers, and consequently degrade the high molecular weight polymer into low molecular weight. This leads to the degradation of plastics within a few days. Some well-known species which show effective degradation on plastics are Aspergillus nidulans, Aspergillus flavus, Aspergillus glaucus, Aspergillus oryzae, Aspergillus nomius, Penicillium griseofulvum, Bjerkandera adusta, Phanerochaete chrysosporium, Cladosporium cladosporioides, etc., and some other saprotrophic fungi, such as Pleurotus abalones, Pleurotus ostreatus, Agaricus bisporus and Pleurotus eryngii which also helps in degradation of plastics by growing on them. Some studies say that the degradation of plastics was more effective when photodegradation and thermo-oxidative mechanisms involved with the biodegradation simultaneously can make the degradation faster and easier. This present review gives current knowledge regarding different species of fungi that are involved in the degradation of plastics by their different enzymatic mechanisms to degrade different forms of plastic polymers.
Collapse
Affiliation(s)
- Munuru Srikanth
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India
| | - T S R S Sandeep
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India.
| | - Kuvala Sucharitha
- Department of Biotechnology, Pydah Degree College, Affiliated to Andhra University, Visakhapatnam, India
| | - Sudhakar Godi
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India
| |
Collapse
|
12
|
Jiang Y, Liang F, Li HY, Li X, Fan YJ, Cao JW, Yin YM, Wang Y, Wang ZL, Zhu G. A Flexible and Ultra-Highly Sensitive Tactile Sensor through a Parallel Circuit by a Magnetic Aligned Conductive Composite. ACS NANO 2022; 16:746-754. [PMID: 34985244 DOI: 10.1021/acsnano.1c08273] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of flexible electronic skins with high performance and multifunctional sensing capabilities is of great significance for applications ranging from healthcare monitoring to artificial intelligence. To mimic and surpass the high-gauge-factor sensing properties of human skin, structure design and appropriate material selection of sensors are both essentially required. Here, we present an efficient, low-cost fabrication strategy to construct an ultra-highly sensitive, flexible pressure sensor by embedding the aligned nickel-coated carbon fibers (NICFs) in a polydimethylsiloxane (PDMS) substrate. Our design substantially contributes to ultrahigh sensitivity through the parallel circuit formed by aligned NICFs as well as surface spinosum microstructure molded by sandpaper. As a result, the sensor exhibits excellent sensitivity (15 525 kPa-1), a fast response time (30 ms), and good stability over 3000 loading-unloading cycles. Furthermore, these superior sensing properties trigger applications in water quality and wave monitoring in conjunction with mechanical flexibility and robustness. As a precedent for adjusting the sensitivities of the sensor, the NICFs/PDMS sensor provides a promising method for multiscenario healthcare monitoring, multiscale pressure spatial distribution, and human-machine interfacing.
Collapse
Affiliation(s)
- Yang Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fei Liang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hua Yang Li
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Xin Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - You Jun Fan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jin Wei Cao
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yi Ming Yin
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| | - Ying Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- CUSTech Institute, Wenzhou, Zhejiang 325024, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Guang Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| |
Collapse
|
13
|
CF SF, Rebello S, Mathachan Aneesh E, Sindhu R, Binod P, Singh S, Pandey A. Bioprospecting of gut microflora for plastic biodegradation. Bioengineered 2021; 12:1040-1053. [PMID: 33769197 PMCID: PMC8806249 DOI: 10.1080/21655979.2021.1902173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 10/24/2022] Open
Abstract
The problem of plastic prevalence and associated pollution has grasped the entire planet drastically, putting all fields of science on the stake seeking remedies to this global havoc. To address this crisis, with a single remediation strategy is often found to be baseless, thereby much interest has been evoked in the development of multidisciplinary approaches - involving physico-chemical and biological strategies to nullify the aftermath of plastic pollution in all possible means. Even amidst, the availability of different approaches, the use of biological methods to combat plastic degradation has gained momentum. The most frequently used plastics appear in wide forms such as polyethylene plastic bags, polypropylene-based bottles, polyvinyl chloride pipes and polystyrene styrene cups. Plastic nicknamed as one of the toughest polymers viz. polycarbonate, acrylonitrile butadiene styrene (ABS) and Polydicyclopentadiene; quite often are called so as they resist degradation in normal environmental strategies. They are often degraded in non-hostile and harsh environments of pH, temperature, radiation etc. However, not always it is possible to create such harsh environments for plastic degradation. In such a scenario, the use of gut microbes that can withstand the harsh atmosphere of gut environment could serve as promising candidates for plastic biodegradation. The current article envisages the various gut microbes of various biological agents and their role in plastic remediation. The current review compiles the techniques available for plastic remediation, the microbial prospects of plastic remediation, its challenges, and possible breakthroughs to effective plastic remediation.
Collapse
Affiliation(s)
| | | | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, TrivandrumIndia
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, TrivandrumIndia
| | - Suren Singh
- Centre for Innovation and Translational Research, CSIR – Indian Institute for Toxicology Research, LucknowIndia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR – Indian Institute for Toxicology Research, LucknowIndia
- Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
- Centre for Energy and Environmental Sustainability, LucknowIndia
| |
Collapse
|
14
|
Dąbrowska GB, Garstecka Z, Olewnik-Kruszkowska E, Szczepańska G, Ostrowski M, Mierek-Adamska A. Comparative Study of Structural Changes of Polylactide and Poly(ethylene terephthalate) in the Presence of Trichoderma viride. Int J Mol Sci 2021; 22:ijms22073491. [PMID: 33800567 PMCID: PMC8038068 DOI: 10.3390/ijms22073491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Plastic pollution is one of the crucial global challenges nowadays, and biodegradation is a promising approach to manage plastic waste in an environment-friendly and cost-effective way. In this study we identified the strain of fungus Trichoderma viride GZ1, which was characterized by particularly high pectinolytic activity. Using differential scanning calorimetry, Fourier-transform infrared spectroscopy techniques, and viscosity measurements we showed that three-month incubation of polylactide and polyethylene terephthalate in the presence of the fungus lead to significant changes of the surface of polylactide. Further, to gain insight into molecular mechanisms underneath the biodegradation process, western blot hybridization was used to show that in the presence of poly(ethylene terephthalate) (PET) in laboratory conditions the fungus produced hydrophobin proteins. The mycelium adhered to the plastic surface, which was confirmed by scanning electron microscopy, possibly due to the presence of hydrophobins. Further, using atomic force microscopy we demonstrated for the first time the formation of hydrophobin film on the surface of aliphatic polylactide (PLA) and PET by T. viride GZ1. This is the first stage of research that will be continued under environmental conditions, potentially leading to a practical application.
Collapse
Affiliation(s)
- Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (G.B.D.); (Z.G.)
| | - Zuzanna Garstecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (G.B.D.); (Z.G.)
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Grażyna Szczepańska
- Laboratory for Instrumental Analysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Maciej Ostrowski
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (G.B.D.); (Z.G.)
- Correspondence: ; Tel.: +48-56-611-4576
| |
Collapse
|
15
|
Maria Rodrigues da Luz J, de Cássia Soares da Silva M, Ferreira dos Santos L, Catarina Megumi Kasuya M. Plastics Polymers Degradation by Fungi. Microorganisms 2020. [DOI: 10.5772/intechopen.88608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
16
|
Satti SM, Shah AA. Polyester-based biodegradable plastics: an approach towards sustainable development. Lett Appl Microbiol 2020; 70:413-430. [PMID: 32086820 DOI: 10.1111/lam.13287] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/29/2022]
Abstract
Non-degradability of conventional plastics, filling of landfill sites, raising water and land pollution and rapid depletion of fossil resources have raised the environmental issues and global concerns. The current demand and production of plastics is putting immense pressure on fossil resources, consuming about 6% of the global oil and is expected to grow up to 20%. The polyester-based biodegradable plastics (BPs) are considered as a remedy to the issue of plastics waste in the environment. BPs appear to manage the overflow of plastics by providing new means of waste management system and help in securing the non-renewable resources of nature. This review comprehensively presents the environmental burdens due to conventional plastics as well as production of polyester-based BPs as an alternative to conventional commodity plastics. The diversity of micro-organisms and their enzymes that degrade various polyester-based BPs (PLA, PCL, PHB/PHBV and PET) has also been described in detail. Moreover, the impact of plastics degradation products on soil ecology and ecosystem functions has critically been discussed. The report ends with special focus on future recommendations for the development of sustainable waste management strategies to control pollution due to plastics waste. SIGNIFICANCE AND IMPACT OF THE STUDY: Polyester-based BPs considered as a solution to current plastic waste problem as well as leading polymers in terms of biodegradability and sustainability has been critically discussed. The role of microorganisms and their enzymes involved in the biodegradation of these polymers and ecotoxicological impact of degradation products of BPs on soil microbial community and biogeochemical cycles has also been described. This report will provide an insight on the key research areas to bridge the gap for development of simulated systems as an effective and emerging strategy to divert the overflow of plastic in the environment as well as for the greener solution to the plastic waste management problems.
Collapse
Affiliation(s)
- S M Satti
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - A A Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
17
|
Brunner I, Fischer M, Rüthi J, Stierli B, Frey B. Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One 2018; 13:e0202047. [PMID: 30133489 PMCID: PMC6104954 DOI: 10.1371/journal.pone.0202047] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/26/2018] [Indexed: 11/18/2022] Open
Abstract
Plastic waste in the environment is a significant threat due to its resistance to biological processes. Here we report the ability of fungal strains found on floating plastic debris to degrade plastics. In particular, we wanted to know which fungi grow on plastic debris floating in the shoreline, whether these fungi have the ability to degrade plastics, whether the plastic-degrading fungi can degrade other complex C-polymers such as lignin, and whether lignin-degraders vice versa can also break down plastics. Overall, more than a hundred fungal strains were isolated from plastic debris of the shoreline of Lake Zurich, Switzerland, and grouped morphologically. Representative strains of these groups were then selected and genetically identified, altogether twelve different fungal species and one species of Oomycota. The list of fungi included commonly occurring saprotrophic fungi but also some plant pathogens. These fungal strains were then used to test the ability to degrade polyethylene and polyurethane. The tests showed that none of the strains were able to degrade polyethylene. However, four strains were able to degrade polyurethane, the three litter-saprotrophic fungi Cladosporium cladosporioides, Xepiculopsis graminea, and Penicillium griseofulvum and the plant pathogen Leptosphaeria sp. A series of additional fungi with an origin other than from plastic debris were tested as well. Here, only the two litter-saprotrophic fungi Agaricus bisporus and Marasmius oreades showed the capability to degrade polyurethane. In contrast, wood-saprotrophic fungi and ectomycorrhizal fungi were unable to degrade polyurethane. Overall, it seems that in majority only a few litter-saprotrophic fungi, which possess a wide variety of enzymes, have the ability to degrade polyurethane. None of the fungi tested was able to degrade polyethylene.
Collapse
Affiliation(s)
- Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- * E-mail:
| | - Moira Fischer
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Joel Rüthi
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
18
|
Pathak VM, Navneet. Review on the current status of polymer degradation: a microbial approach. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0145-9] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
19
|
Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams. Appl Environ Microbiol 2016; 82:5225-35. [PMID: 27316963 DOI: 10.1128/aem.01344-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source. Of the eight best Impranil-degrading strains, the six best degraders belonged to the Cladosporium cladosporioides complex, including the species C. pseudocladosporioides, C. tenuissimum, C. asperulatum, and C. montecillanum, and the two others were identified as Aspergillus fumigatus and Penicillium chrysogenum The best Impranil degrader, C. pseudocladosporioides strain T1.PL.1, degraded up to 87% after 14 days of incubation. Fourier transform infrared (FTIR) spectroscopy analysis of Impranil degradation by this strain showed a loss of carbonyl groups (1,729 cm(-1)) and N-H bonds (1,540 and 1,261 cm(-1)), and gas chromatography-mass spectrometry (GC-MS) analysis showed a decrease in ester compounds and increase in alcohols and hexane diisocyanate, indicating the hydrolysis of ester and urethane bonds. Extracellular esterase and low urease, but not protease activities were detected at 7 and 14 days of culture in Impranil. The best eight Impranil-degrading fungi were also able to degrade solid foams of the highly recalcitrant PE-PU type to different extents, with the highest levels generating up to 65% of dry-weight losses not previously reported. Scanning electron microscopy (SEM) analysis of fungus-treated foams showed melted and thinner cell wall structures than the non-fungus-treated ones, demonstrating fungal biodegradative action on PE-PU. IMPORTANCE Polyurethane waste disposal has become a serious problem. In this work, fungal strains able to efficiently degrade different types of polyurethanes are reported, and their biodegradative activity was studied by different experimental approaches. Varnish biodegradation analyses showed that fungi were able to break down the polymer in some of their precursors, offering the possibility that they may be recovered and used for new polyurethane synthesis. Also, the levels of degradation of solid polyether polyurethane foams reported in this work have never been observed previously. Isolation of efficient polyurethane-degrading microorganisms and delving into the mechanisms they used to degrade the polymer provide the basis for the development of biotechnological processes for polyurethane biodegradation and recycling.
Collapse
|
20
|
Abstract
Frequent and frequently deliberate release of plastics leads to accumulation of plastic waste in the environment which is an ever increasing ecological threat.
Collapse
Affiliation(s)
- Neha Mahajan
- Department of Biotechnology
- Govt Degree College Kathua
- Higher Education Department
- India 184104
| | - Pankaj Gupta
- Department of Chemistry
- Govt Degree College Kathua
- Higher Education Department
- India 184104
| |
Collapse
|
21
|
Mathur G, Prasad R. Degradation of Polyurethane by Aspergillus flavus (ITCC 6051) Isolated from Soil. Appl Biochem Biotechnol 2012; 167:1595-602. [DOI: 10.1007/s12010-012-9572-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
|