1
|
Segbefia SP, Asandem DA, Amoah LE, Kusi KA. Cytokine gene polymorphisms implicated in the pathogenesis of Plasmodium falciparum infection outcome. Front Immunol 2024; 15:1285411. [PMID: 38404582 PMCID: PMC10884311 DOI: 10.3389/fimmu.2024.1285411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play a critical role in the immune mechanisms involved in fighting infections including malaria. Polymorphisms in cytokine genes may affect immune responses during an infection with Plasmodium parasites and immunization outcomes during routine administration of malaria vaccines. These polymorphisms can increase or reduce susceptibility to this deadly infection, and this may affect the physiologically needed balance between anti-inflammatory and pro-inflammatory cytokines. The purpose of this review is to present an overview of the effect of selected cytokine gene polymorphisms on immune responses against malaria.
Collapse
Affiliation(s)
- Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Diana Asema Asandem
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
2
|
Maharaj L, Adeleke VT, Fatoba AJ, Adeniyi AA, Tshilwane SI, Adeleke MA, Maharaj R, Okpeku M. Immunoinformatics approach for multi-epitope vaccine design against P. falciparum malaria. INFECTION GENETICS AND EVOLUTION 2021; 92:104875. [PMID: 33905890 DOI: 10.1016/j.meegid.2021.104875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Plasmodium falciparum (P. falciparum) is a leading causative agent of malaria, an infectious disease that can be fatal. Unfortunately, control measures are becoming less effective over time. A vaccine is needed to effectively control malaria and lead towards the total elimination of the disease. There have been multiple attempts to develop a vaccine, but to date, none have been certified as appropriate for wide-scale use. In this study, an immunoinformatics method is presented to design a multi-epitope vaccine construct predicted to be effective against P. falciparum malaria. This was done through the prediction of 12 CD4+ T-cell, 10 CD8+ T-cell epitopes and, 1 B-cell epitope which were assessed for predicted high antigenicity, immunogenicity, and non-allergenicity through in silico methods. The Human Leukocyte Antigen (HLA) population coverage showed that the alleles associated with the epitopes accounted for 78.48% of the global population. The CD4+ and CD8+ T-cell epitopes were docked to HLA-DRB1*07:01 and HLA-A*32:01 successfully. Therefore, the epitopes were deemed to be suitable as components of a multi-epitope vaccine construct. Adjuvant RS09 was added to the construct to generate a stronger immune response, as confirmed by an immune system simulation. Finally, the structural stability of the predicted multi-epitope vaccine was assessed using molecular dynamics simulations. The results show a promising vaccine design that should be further synthesised and assessed for its efficacy in an experimental laboratory setting.
Collapse
Affiliation(s)
- Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Victoria T Adeleke
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa
| | - Abiodun J Fatoba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Adebayo A Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa; Department of Industrial Chemistry, Federal University Oye Ekiti, Nigeria
| | - Selaelo I Tshilwane
- School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Matthew A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, Medical Research Council, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| |
Collapse
|
3
|
Lozano JM, Rodríguez Parra Z, Hernández-Martínez S, Yasnot-Acosta MF, Rojas AP, Marín-Waldo LS, Rincón JE. The Search of a Malaria Vaccine: The Time for Modified Immuno-Potentiating Probes. Vaccines (Basel) 2021; 9:vaccines9020115. [PMID: 33540947 PMCID: PMC7913233 DOI: 10.3390/vaccines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.
Collapse
Affiliation(s)
- José Manuel Lozano
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
- Correspondence: ; Tel.: +57-3102-504-657
| | - Zully Rodríguez Parra
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
| | - Salvador Hernández-Martínez
- Dirección de Infección e Inmunidad, Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62508 Cuernavaca, Morelos, Mexico;
| | - Maria Fernanda Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, 230002 Monteria, Colombia;
| | - Angela Patricia Rojas
- Grupo de Investigación Biología Celular y Autoinmuniad, Departamento de Farmacia, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| | | | - Juan Edilberto Rincón
- Departamento de Ingeniería y Mecatrónica, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| |
Collapse
|
4
|
Pritam M, Singh G, Swaroop S, Singh AK, Pandey B, Singh SP. A cutting-edge immunoinformatics approach for design of multi-epitope oral vaccine against dreadful human malaria. Int J Biol Macromol 2020; 158:159-179. [PMID: 32360460 PMCID: PMC7189201 DOI: 10.1016/j.ijbiomac.2020.04.191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/28/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Human malaria is a pathogenic disease mainly caused by Plasmodium falciparum, which was responsible for about 405,000 deaths globally in the year 2018. To date, several vaccine candidates have been evaluated for prevention, which failed to produce optimal output at various preclinical/clinical stages. This study is based on designing of polypeptide vaccines (PVs) against human malaria that cover almost all stages of life-cycle of Plasmodium and for the same 5 genome derived predicted antigenic proteins (GDPAP) have been used. For the development of a multi-immune inducer, 15 PVs were initially designed using T-cell epitope ensemble, which covered >99% human population as well as linear B-cell epitopes with or without adjuvants. The immune simulation of PVs showed higher levels of T-cell and B-cell activities compared to positive and negative vaccine controls. Furthermore, in silico cloning of PVs and codon optimization followed by enhanced expression within Lactococcus lactis host system was also explored. Although, the study has sound theoretical and in silico findings, the in vitro/in vivo evaluation seems imperative to warrant the immunogenicity and safety of PVs towards management of P. falciparum infection in the future.
Collapse
Affiliation(s)
- Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India
| | - Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India
| | - Suchit Swaroop
- Experimental & Public Health Lab, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Bihar 845401, India
| | - Brijesh Pandey
- Department of Biotechnology, Mahatma Gandhi Central University, Bihar 845401, India
| | | |
Collapse
|
5
|
Nawaz M, Malik I, Hameed M, Hussain Kuthu Z, Zhou J. Modifications of histones in parasites as drug targets. Vet Parasitol 2020; 278:109029. [PMID: 31978703 DOI: 10.1016/j.vetpar.2020.109029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Post-translational modifications of histones and histone modifying enzymes play important roles in gene regulations and other physiological processes in parasites. Inhibitors of such modifying enzymes could be useful as novel therapeutics against parasitic diseases or as chemical probes for investigation of epigenetics. Development of parasitic histone modulators has got rapid expansion in the last few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Some of these compounds have been widely used in humans targeting cancer and are found non-toxic. This review summarizes the antiparasitic activities of histone and histone modifying enzymes inhibitors evaluated in last few years. As the current chemotherapy against parasites is still not satisfactory, therefore, such compounds represents good starting points for the discovery of effective antiparasitic drugs.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Irfan Malik
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mudassar Hameed
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zulfiqar Hussain Kuthu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
6
|
The Immunological Plasmodium falciparum Malaria Characteristics of Children in Tajikistan Republic. J Trop Med 2019; 2019:5147252. [PMID: 31308850 PMCID: PMC6594323 DOI: 10.1155/2019/5147252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/27/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
The epidemiological situation in Tajikistan Republic deteriorated in the 1990s, when an influx of refugees from Afghanistan resulted in mass importation of Plasmodium vivax and Plasmodium falciparum malaria to Khatlon region. The National Programme of Malaria Control was successful and malaria transmission was interrupted in 2009. Background. The aim of this study was to investigate the mechanisms of immunological response in Tajik children with tropical Plasmodium falciparum malaria. Materials and Methods. We examined 124 patients with P. falciparum malaria at the age of 6 months up to 14 years that were hospitalized in Clinical Infectious Diseases Hospital in Dushanbe city and in Regional hospital of Khatlon region in the period 2000-2007. In most cases, they were school-age children (56%). The peak incidence was recorded in July-October. Verification of the diagnosis was based on clinical, epidemiological data, and the results of blood microscopy. In all patients, along with the standard, clinical, and laboratory tests, a number of indicators of the immune status were performed that include the T-immunity, the content of serum immunoglobulins of three main classes, the level of circulating immune complexes (CIC), C3 complement, and the concentration of key serum cytokines that have been studied in the dynamics of infectious process. Finding. The study of cellular and humoral immunity in patients with Plasmodium falciparum malaria is an obvious additional criterion in assessing the severity of infection. The imbalance of cytokine profile is an important pathogenic factor in the development of severe and recurrent forms of the disease, since the formation of a defective immune response to parasitic antigens contributes to adverse outcomes. Conclusions. Plasmodium falciparum malaria was characterized by depression of cellular and humoral immunity, the degree of which depended on the severity of the pathological process.
Collapse
|
7
|
Yam XY, Preiser PR. Host immune evasion strategies of malaria blood stage parasite. MOLECULAR BIOSYSTEMS 2018; 13:2498-2508. [PMID: 29091093 DOI: 10.1039/c7mb00502d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Host immune evasion is a key strategy for the continual survival of many microbial pathogens including Apicomplexan protozoan: Plasmodium spp., the causative agent of Malaria. The malaria parasite has evolved a variety of mechanisms to evade the host immune responses within its two hosts: the female Anopheles mosquito vector and vertebrate host. In this review, we will focus on the molecular mechanisms of the immune evasion strategies used by the Plasmodium parasite at the blood stage which is responsible for the clinical manifestations of human malaria. We also aim to provide some insights on the potential targets for malaria interventions through the recent advancement in understanding the molecular biology of the parasite.
Collapse
Affiliation(s)
- Xue Yan Yam
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| | | |
Collapse
|
8
|
Immune Response and Evasion Mechanisms of Plasmodium falciparum Parasites. J Immunol Res 2018; 2018:6529681. [PMID: 29765991 PMCID: PMC5889876 DOI: 10.1155/2018/6529681] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/17/2018] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Malaria causes approximately 212 million cases and 429 thousand deaths annually. Plasmodium falciparum is responsible for the vast majority of deaths (99%) than others. The virulence of P. falciparum is mostly associated with immune response-evading ability. It has different mechanisms to evade both Anopheles mosquito and human host immune responses. Immune-evading mechanisms in mosquito depend mainly on the Pfs47 gene that inhibits Janus kinase-mediated activation. Host complement factor also protects human complement immune attack of extracellular gametes in Anopheles mosquito midgut. In the human host, evasion largely results from antigenic variation, polymorphism, and sequestration. They also induce Kupffer cell apoptosis at the preerythrocytic stage and interfere with phagocytic functions of macrophage by hemozoin in the erythrocytic stage. Lack of major histocompatibility complex-I molecule expression on the surface red blood cells also avoids recognition by CD8+ T cells. Complement proteins could allow for the entry of parasite into the red blood cell. Intracellular survival also assists the escape of malarial parasite. Invading, evading, and immune response mechanisms both in malaria vector and human host are critical to design appropriate vaccine. As a result, the receptors and ligands involved in different stages of malaria parasites should be elucidated.
Collapse
|
9
|
Molecular Camouflage of Plasmodium falciparum Merozoites by Binding of Host Vitronectin to P47 Fragment of SERA5. Sci Rep 2018; 8:5052. [PMID: 29567995 PMCID: PMC5864917 DOI: 10.1038/s41598-018-23194-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/07/2018] [Indexed: 12/31/2022] Open
Abstract
The malaria parasite Plasmodium falciparum proliferates in the blood stream where the host immune system is most active. To escape from host immunity, P. falciparum has developed a number of evasion mechanisms. Serine repeat antigen 5 (SERA5) is a blood stage antigen highly expressed at late trophozoite and schizont stages. The P47 N-terminal domain of SERA5, the basis of SE36 antigen of the blood stage vaccine candidate under clinical trials, covers the merozoite surface. Exploring the role of the P47 domain, screening of serum proteins showed that vitronectin (VTN) directly binds to 20 residues in the C-terminal region of SE36. VTN co-localized with P47 domain in the schizont and merozoite stages. Phagocytosis assay using THP-1 cells demonstrated that VTN bound to SE36 prevented engulfment of SE36-beads. In addition, several serum proteins localized on the merozoite surface, suggesting that host proteins camouflage merozoites against host immunity via binding to VTN.
Collapse
|
10
|
Ngwa CJ, Kiesow MJ, Papst O, Orchard LM, Filarsky M, Rosinski AN, Voss TS, Llinás M, Pradel G. Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum. Front Cell Infect Microbiol 2017; 7:320. [PMID: 28791254 PMCID: PMC5522858 DOI: 10.3389/fcimb.2017.00320] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA). TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING)-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry demonstrated PfRNF1 expression mainly in the sexual stages of P. falciparum with peak expression in stage II gametocytes, where the protein localized to the nucleus and cytoplasm. Pfrnf1 promoter and coding regions associated with acetylated histones, and TSA-treatment resulted in increased PfRNF1 levels. Our combined data point to an essential role of histone acetylation for gene regulation in gametocytes, which can be exploited for malaria transmission-blocking interventions.
Collapse
Affiliation(s)
- Che J Ngwa
- Division of Cellular and Applied Infection Biology, RWTH Aachen UniversityAachen, Germany
| | - Meike J Kiesow
- Division of Cellular and Applied Infection Biology, RWTH Aachen UniversityAachen, Germany
| | - Olga Papst
- Division of Cellular and Applied Infection Biology, RWTH Aachen UniversityAachen, Germany
| | - Lindsey M Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, United States
| | - Michael Filarsky
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteBasel, Switzerland
| | - Alina N Rosinski
- Division of Cellular and Applied Infection Biology, RWTH Aachen UniversityAachen, Germany
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteBasel, Switzerland
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, United States.,Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State UniversityUniversity Park, PA, United States
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|