1
|
Hospet R, Thangadurai D, Cruz-Martins N, Sangeetha J, Anu Appaiah KA, Chowdhury ZZ, Bedi N, Soytong K, Al Tawahaj ARM, Jabeen S, Tallur MM. Genome shuffling for phenotypic improvement of industrial strains through recursive protoplast fusion technology. Crit Rev Food Sci Nutr 2021:1-10. [PMID: 34592865 DOI: 10.1080/10408398.2021.1983763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Strains' improvement technology plays an essential role in enhancing the quality of industrial strains. Several traditional methods and modern techniques have been used to further improve strain engineering programs. The advances stated in strain engineering and the increasing demand for microbial metabolites leads to the invention of the genome shuffling technique, which ensures a specific phenotype improvement through inducing mutation and recursive protoplast fusion. In such technique, the selection of multi-parental strains with distinct phenotypic traits is crucial. In addition, as this evolutionary strain improvement technique involves combinative approaches, it does not require any gene sequence data for genome alteration and, therefore, strains developed by this elite technique will not be considered as genetically modified organisms. In this review, the different stages involved in the genome shuffling technique and its wide applications in various phenotype improvements will be addressed. Taken together, data discussed here highlight that the use of genome shuffling for strain improvement will be a plus for solving complex phenotypic traits and in promoting the rapid development of other industrially important strains.
Collapse
Affiliation(s)
| | | | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, Portugal
| | - Jeyabalan Sangeetha
- Department of Environmental Science, Central University of Kerala, Kasaragod, Kerala, India
| | - Konerira Aiyappa Anu Appaiah
- Department of Microbiology and Fermentation Technology, Central Food Technological Research Institute (CSIR), Mysore, Karnataka, India
| | - Zaira Zaman Chowdhury
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute of Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia
| | - Namita Bedi
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kasem Soytong
- Department of Plant Production Technology, King Mongkut's Institute of Technology Ladkrabang (KMITL), Ladkrabang, Bangkok, Thailand
| | | | - Shoukat Jabeen
- Department of Botany, Karnatak University, Dharwad, Karnataka, India
| | | |
Collapse
|
2
|
El-Shafaey ES, Ateya A, Ramadan H, Saleh R, Elseady Y, Abo El Fadl E, El-Khodery S. Single Nucleotide Polymorphisms in IL8 and TLR4 Genes as Candidates for Digital Dermatitis Resistance/Susceptibility in Holstein Cattle. Anim Biotechnol 2016; 28:131-137. [PMID: 27813832 DOI: 10.1080/10495398.2016.1242489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Relatedness between single nucleotide polymorphisms in IL8 and TLR4 genes and digital dermatitis resistance/susceptibility was investigated in seventy Holstein dairy cows. Animals were assigned into two groups, affected group (n = 35) and resistant group (n = 35) based on clinical signs and previous history of farm clinical records. Blood samples were collected for DNA extraction to ampliy fragments of 267-bp and 382-bp for IL8 and TLR4 genes, respectively. PCR-DNA sequencing revealed three SNPs in each of IL8 and TLR4 genes. The identified SNPs associated with digital dermatitis resistance were C94T, A220G, and T262A for IL8 and C118T for TLR4. However, the G349C and C355A SNPs in TLR4 gene were associated with digital dermatitis susceptibility. Chi-square analysis for comparison the distribution of all identified SNPs in both IL8 and TLR4 genes between resistant and affected animals showed no significant variation among the identified SNPs in IL8 gene. Meanwhile, there was a significant variation in case of TLR4 gene. As a pilot study, the present results revealed that identified SNPs in IL8 and TLR4 genes can be used as a genetic marker and predisposing factor for resistance/susceptibility to digital dermatitis in dairy cows. However, TLR4 gene may be a potential candidate for such disease.
Collapse
Affiliation(s)
- El-Sayed El-Shafaey
- a Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine , Mansoura University , Mansoura , Egypt
| | - Ahmed Ateya
- b Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine , Mansoura University , Mansoura , Egypt
| | - Hazem Ramadan
- c Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine , Mansoura University , Mansoura , Egypt
| | - Rasha Saleh
- d Department of Animal Physiology, Faculty of Veterinary Medicine , Mansoura University , Mansoura , Egypt
| | - Yousef Elseady
- d Department of Animal Physiology, Faculty of Veterinary Medicine , Mansoura University , Mansoura , Egypt
| | - Eman Abo El Fadl
- b Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine , Mansoura University , Mansoura , Egypt
| | - Sabry El-Khodery
- e Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine , Mansoura University , Mansoura , Egypt
| |
Collapse
|