1
|
Mastanjević K, Kovačević D, Nešić K, Krstanović V, Habschied K. Traditional Meat Products-A Mycotoxicological Review. Life (Basel) 2023; 13:2211. [PMID: 38004351 PMCID: PMC10671907 DOI: 10.3390/life13112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Traditional meat products are commonly produced in small family businesses. However, big industries are also involved in the production of this kind of product, especially since a growing number of consumers crave the traditional taste and aromas. The popularization of original and organic products has resulted in a return to traditional production methods. Traditional meat products are produced worldwide. However, in such (domesticated) conditions there is a potential danger for mycotoxin contamination. This review aims to present the sources of mycotoxins in traditional meat products, the most common mycotoxins related to such meat products, and future prospects regarding the suppression of their occurrence. Special attention should be paid to reducing the transfer of mycotoxins via the food chain from animal feed to animals to humans (stable-to-table principle), which is also described in this review. Other sources of mycotoxins (spices, environment, etc.) should also be monitored for mycotoxins in traditional production. The importance of monitoring and regulating mycotoxins in meat products, especially in traditional meat products, is slowly being recognized by the institutions and hopefully, in the future, can deliver legally regulated limits for such products. This is especially important since meat products are available to the general population and can seriously affect human health.
Collapse
Affiliation(s)
- Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Dragan Kovačević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Ksenija Nešić
- Food and Feed Department, Institute of Veterinary Medicine of Serbia, Smolućska 11, 11070 Beograd, Serbia;
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| |
Collapse
|
2
|
Mycotoxins and Essential Oils-From a Meat Industry Hazard to a Possible Solution: A Brief Review. Foods 2022; 11:foods11223666. [PMID: 36429263 PMCID: PMC9688991 DOI: 10.3390/foods11223666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The preservation of food supplies has been humankind's priority since ancient times, and it is arguably more relevant today than ever before. Food sustainability and safety have been heavily prioritized by consumers, producers, and government entities alike. In this regard, filamentous fungi have always been a health hazard due to their contamination of the food substrate with mycotoxins. Additionally, mycotoxins are proven resilient to technological processing. This study aims to identify the main mycotoxins that may occur in the meat and meat products "Farm to Fork" chain, along with their effect on the consumers' health, and also to identify effective methods of prevention through the use of essential oils (EO). At the same time, the antifungal and antimycotoxigenic potential of essential oils was considered in order to provide an overview of the subject. Targeting the main ways of meat products' contamination, the use of essential oils with proven in vitro or in situ efficacy against certain fungal species can be an effective alternative if all the associated challenges are addressed (e.g., application methods, suitability for certain products, toxicity).
Collapse
|
3
|
Chen K, Zhang M, Bhandari B, Mujumdar AS. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res Int 2021; 139:109809. [PMID: 33509452 DOI: 10.1016/j.foodres.2020.109809] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
In the context of consumers' growing concerns and boycotts of artificial and harmful chemicals, satisfying the demands for good-quality food products possessing clean and safe images is a challenge for food industry. Due to natural and avirulent images, various bioactivities as well as potentials to be used as safer substitutes for chemical preservatives, flower essential oils (EOs) have aroused increasing interests in the recent past. Many literatures have verified the biological activities of flower EOs, and have given high value to the preservative potentials of flower EOs in food systems. In this work, a review is done on the most recent publications associating the chemical constituents, bioactivities (antibacterial, antifungal, antioxidant and anti-pest abilities) and safety of flower EOs. The effects of flower EOs on food flavor are also discussed. Finally, the current combined preservation applications of flower EOs and other technologies are summarized.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Shandong Huamei Biology Science & Technology Co., Ltd., 250400 Pingyin, Shandong, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Quebec H9×3V9, Canada
| |
Collapse
|
4
|
Kollia E, Proestos C, Zoumpoulakis P, Markaki P. Capsaicin, an inhibitor of Ochratoxin A production by Aspergillus section Nigri strains in grapes ( Vitis vinifera L.). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1709-1721. [PMID: 31437087 DOI: 10.1080/19440049.2019.1652771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Food decay by spoilage fungi leads to significant economic losses and hazards to consumers' health due to the potential of mycotoxin occurrence. Ochratoxin A (OTA) is a mycotoxin known as nephrotoxic and carcinogenic to humans. Natural capsaicin was evaluated for its effectiveness against the growth of five Aspergillus section Nigri strains and accumulation of OTA in inoculated black grapes. Results showed that capsaicin was effective in inhibiting fungal growth and OTA production by new four Aspergillus section Nigri strains (ATHUM 6997, 6998, 6999, 7000) and by Aspergillus carbonarius as well. Moreover, capsaicin addition exhibited maximum inhibition of OTA produced by ATHUM 6997, 6998, 6999, and 7000 in black grapes at 28.9%, 8.6%, 68.4%, and 78.1%, respectively. Inhibition percentage of OTA production by A. carbonarius in grapes treated with capsaicin was estimated at 61.5%. These results suggest that capsaicin influences the OTA biosynthesis pathway of all Aspergillus section Nigri strains and therefore could be used as an effective natural preservative against OTA contamination of vineyards. Risk assessment revealed that when grapes are treated with capsaicin, consumers are less exposed to OTA.
Collapse
Affiliation(s)
- Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiota Markaki
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Kollia E, Proestos C, Zoumpoulakis P, Markaki P. Inhibitory effect ofCynara cardunculusL. extract on aflatoxin B1 production byAspergillus parasiticusin sesame (Sesamum indicumL.). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1206928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Effect of γ-radiation on the production of aflatoxin B1 by Aspergillus parasiticus in raisins (Vitis vinifera L.). Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species. Fungal Genet Biol 2014; 81:229-37. [PMID: 25498164 DOI: 10.1016/j.fgb.2014.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 01/11/2023]
Abstract
Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past.
Collapse
|
8
|
Kostarelou P, Kanapitsas A, Pyrri I, Kapsanaki-Gotsi E, Markaki P. Aflatoxin B1 production by Aspergillus parasiticus and strains of Aspergillus section Nigri in currants of Greek origin. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Zhang JD, Han L, Yan S, Liu CM. The non-metabolizable glucose analog D-glucal inhibits aflatoxin biosynthesis and promotes kojic acid production in Aspergillus flavus. BMC Microbiol 2014; 14:95. [PMID: 24742119 PMCID: PMC4021404 DOI: 10.1186/1471-2180-14-95] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/09/2014] [Indexed: 01/17/2023] Open
Abstract
Background Aflatoxins (AFs) are potent carcinogenic compounds produced by several Aspergillus species, which pose serious threats to human health. As sugar is a preferred carbohydrate source for AF production, we examined the possibility of using sugar analogs to inhibit AF biosynthesis. Results We showed that although D-glucal cannot be utilized by A. flavus as the sole carbohydrate source, it inhibited AF biosynthesis and promoted kojic acid production without affecting mycelial growth when applied to a glucose-containing medium. The inhibition occurred before the production of the first stable intermediate, norsolorinic acid, suggesting a complete inhibition of the AF biosynthetic pathway. Further studies showed that exogenous D-glucal in culture led to reduced accumulation of tricarboxylic acid (TCA) cycle intermediates and reduced glucose consumption, indicating that glycolysis is inhibited. Expression analyses revealed that D-glucal suppressed the expression of AF biosynthetic genes but promoted the expression of kojic acid biosynthetic genes. Conclusions D-glucal as a non-metabolizable glucose analog inhibits the AF biosynthesis pathway by suppressing the expression of AF biosynthetic genes. The inhibition may occur either directly through interfering with glycolysis, or indirectly through reduced oxidative stresses from kojic acid biosynthesis.
Collapse
Affiliation(s)
| | | | | | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Beijing 100093, China.
| |
Collapse
|