1
|
Jadtanim C, Luong TTH, Poeaim S. Isolation and Characterization of a Promising Lignocellulolytic Enzyme Producer Pseudolagarobasidium acaciicola SL3-03 from Mangrove Soil in Thailand. Curr Microbiol 2024; 82:62. [PMID: 39739044 DOI: 10.1007/s00284-024-04029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025]
Abstract
Lignocellulolytic enzymes isolation from mangrove-derived organisms has many industrial advantages due to their efficiency in dealing with extreme and challenging conditions, such as high temperatures and salt concentrations. This study aimed to isolate fungal enzyme producers from mangrove soil in Thailand to produce lignocellulolytic enzymes (carboxymethyl cellulase: CMCase, xylanase, and laccase) and to characterize these enzymes to support industrial applications. Forty-eight fungi were isolated from the mangrove samples, and their enzyme-producing capabilities were assessed using primary and secondary screening methods. The findings revealed that Pseudolagarobasidium acaciicola SL3-03 emerged as a promising producer of lignocellulolytic enzymes. It exhibited the ability to produce 1.345 U/mL of CMCase, 1.293 U/mL of xylanase, and 43.126 U/mL of laccase. Furthermore, the enzymatic characteristics of P. acaciicola SL3-03 were analyzed. The CMCase exhibited optimal activity at 50 °C and pH 5.5, the xylanase at 50 °C and pH 4.8, and the laccase at 55 °C and pH 5. Besides, the CMCase and xylanase from P. acaciicola SL3-03 expressed high halotolerance abilities that could maintain activity and stability under high salt concentrations (149% activity at 5 M NaCl). Future studies may focus on structural analysis of the enzymes to further characterize and identify their specific types. The results suggest that mangrove soil harbors significant potential for discovering proficient lignocellulolytic enzyme producers with desirable characteristics, which can be advantageous for industrial applications.
Collapse
Affiliation(s)
- Chanaphon Jadtanim
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, 10520, Thailand
| | - Thi Thu Huong Luong
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, 10520, Thailand
| | - Supattra Poeaim
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, 10520, Thailand.
| |
Collapse
|
2
|
Niazi AR, Ghafoor A, Mushtaq A. Systematic characterisation, and effect of nutritional and physical parameters on culturability, laccase production and dye decolorisation potential by P. pistillaris from Pakistan. Nat Prod Res 2024; 38:3519-3527. [PMID: 37665202 DOI: 10.1080/14786419.2023.2253558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Podaxis pistillaris is neutraceutically, cosmoceutically and medicinally recognised macrofungus. During this research work, this edible mushroom was systematically characterised. Its culturability, laccase production, and dye decolorisation potential were evaluated and optimised. Among the different media tested, PDA proved as most efficient medium for culturability of P. pistillaris. Conditions for laccase production were optimised in submerged state fermentation. Maximum laccase secretion was noted after 14th day of Incubation at 35 °C with 130 rpm and 5 pH of medium. Fructose and ammonium-phosphate was found as best carbon and nitrogen source, while wheat straw revealed as good ligno-cellulosic source for strengthening laccase production. Congo-red dye decolorisation capability by crude laccase enzyme was evaluated and found maximum decolorisation potential (92.2%) after 288h of incubation. From this pilot study, it was confirmed that this edible macrofungus has culturability, laccase production and dye decolorisation attributes that will further contribute in delignification, biosorption and bioremediation.
Collapse
Affiliation(s)
| | - Aneeqa Ghafoor
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Asma Mushtaq
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Graziosi S, Puliga F, Iotti M, Amicucci A, Zambonelli A. In vitro interactions between Bradyrhizobium spp. and Tuber magnatum mycelium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13271. [PMID: 38692852 PMCID: PMC11062863 DOI: 10.1111/1758-2229.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Tuber magnatum is the most expensive truffle, but its large-scale cultivation is still a challenge compared to other valuable Tuber species. T. magnatum mycelium has never been grown profitably until now, which has led to difficulties to studying it in vitro. This study describes beneficial interactions between T. magnatum mycelium and never before described bradyrhizobia, which allows the in vitro growth of T. magnatum mycelium. Three T. magnatum strains were co-isolated on modified Woody Plant Medium (mWPM) with aerobic bacteria and characterised through microscopic observations. The difficulties of growing alone both partners, bacteria and T. magnatum mycelium, on mWPM demonstrated the reciprocal dependency. Three bacterial isolates for each T. magnatum strain were obtained and molecularly characterised by sequencing the 16S rRNA, glnII, recA and nifH genes. Phylogenetic analyses showed that all nine bacterial strains were distributed among five subclades included in a new monophyletic lineage belonging to the Bradyrhizobium genus within the Bradyrhizobium jicamae supergroup. The nifH genes were detected in all bacterial isolates, suggesting nitrogen-fixing capacities. This is the first report of consistent T. magnatum mycelium growth in vitro conditions. It has important implications for the development of new technologies in white truffle cultivation and for further studies on T. magnatum biology and genetics.
Collapse
Affiliation(s)
- Simone Graziosi
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Federico Puliga
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Mirco Iotti
- Department of Life, Health and Environmental ScienceUniversity of L'AquilaL'AquilaItaly
| | | | | |
Collapse
|
4
|
Antimicrobial Efficacy of Extracts of Saudi Arabian Desert Terfezia claveryi Truffles. Saudi J Biol Sci 2022; 29:103462. [PMID: 36267911 PMCID: PMC9576567 DOI: 10.1016/j.sjbs.2022.103462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background Terfezia claveryi truffles are known for their nutritional value and have been considered among traditional treatments for ophthalmic infections and ailments. Objectives We sought to investigate the in vitro antimicrobial efficacy of several T. claveryi extracts from Saudi Arabia. Certain pathogenic fungi and gram-negative and gram-positive bacteria were included. Methods Dry extracts were prepared using methanol, ethyl acetate, and distilled water, while the latter was used for preparing fresh extracts. The extracts were microbiologically evaluated through the disc-diffusion agar method; the zones of inhibition of microbial growth were measured post-incubation. The minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) were determined in Müller-Hinton Broth through the microdilution susceptibility method. anti-biofilm activity was assessed for potent extracts. Results Dry extracts showed potent activity (>16-mm inhibition zones) against gram-positive (Bacillus subtilis IFO3007 and Staphylococcus aureus IFO3060) and gram-negative (Pseudomonas aeruginosa IFO3448 and Escherichia coli IFO3301) bacteria. The activity against fungi was moderate (12–16-mm inhibition zones) for both Aspergillus oryzae IFO4177 and Candida albicans IFO0583; there was no activity against Aspergillus niger IFO4414 growth. Methanolic extract had the lowest MIC and MBC, exhibiting remarkable activity against B. subtilis growth. Fresh extract showed moderate activity against bacterial growth and inactivity against fungal growth. Methanolic extract showed potent anti-biofilm activity (IC50, 2.0 ± 0.18 mg/mL) against S. aureus. Conclusions T. claveryi extracts showed antibacterial effects potentially suitable for clinical application, which warrants further in-depth analysis of their individual isolated compounds.
Collapse
|
5
|
Shah N, Marathe SJ, Croce D, Ciardi M, Longo V, Juilus A, Shamekh S. An investigation of the antioxidant potential and bioaccumulated minerals in Tuber borchii and Tuber maculatum mycelia obtained by submerged fermentation. Arch Microbiol 2021; 204:64. [DOI: 10.1007/s00203-021-02717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
|
6
|
Marathe SJ, Hamzi W, Bashein AM, Deska J, Seppänen-Laakso T, Singhal RS, Shamekh S. Anti-angiogenic and anti-inflammatory activity of the summer truffle (Tuber aestivum Vittad.) extracts and a correlation with the chemical constituents identified therein. Food Res Int 2020; 137:109699. [PMID: 33233273 DOI: 10.1016/j.foodres.2020.109699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/03/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
Fungi are a huge source of unexplored bioactive compounds. Owing to their biological activities, several fungi have shown commercial application in the health industry. Tuber aestivum Vittad. is one such edible fungi with an immense scope for practical biological applications. In the present study, the anti-angiogenic activity of petroleum ether and ethanol extracts of T. aestivum was investigated using the chick chorioallantoic membrane assay and compared to the positive controls silibinin and lenalidomide. Both the extracts showed a dose-dependent anti-angiogenic response. The extracts were also assessed for their anti-inflammatory potential by lipoxygenase-inhibition assay. The IC50 values for LOX inhibition assay, computed by the Boltzmann plot, were 368.5, 147.3 and 40.2 µg/mL, for the petroleum ether extract, ethanol extract, and the positive control ascorbic acid, respectively. The ethanol extract of T. aestivum showed superior anti-angiogenic and anti-inflammatory activity than the petroleum ether extract. Compositional investigation of the extracts by GC-MS revealed the presence of various bioactive compounds. The compounds were correlated to their anti-angiogenic and anti-inflammatory activity based on a meticulous literature search.
Collapse
Affiliation(s)
- Sandesh J Marathe
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai 400 019, India.
| | | | - Abdulla M Bashein
- Department of Biochemistry, Faculty of Medicine, University of Tripoli, Libya
| | - Jan Deska
- Department of Chemistry and Materials Science, Aalto University, Espoo, Finland
| | - Tuulikki Seppänen-Laakso
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Finland
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai 400 019, India
| | | |
Collapse
|
7
|
Lee H, Nam K, Zahra Z, Farooqi MQU. Potentials of truffles in nutritional and medicinal applications: a review. Fungal Biol Biotechnol 2020; 7:9. [PMID: 32566240 PMCID: PMC7301458 DOI: 10.1186/s40694-020-00097-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Truffles, the symbiotic hypogeous edible fungi, have been worldwide regarded as a great delicacy because of their unique flavor and high nutritional value. By identifying their bioactive components such as phenolics, terpenoids, polysaccharides, anandamide, fatty acids, and ergosterols, researchers have paid attention to their biological activities including antitumor, antioxidant, antibacterial, anti-inflammatory, and hepatoprotective activities. In addition, numerous factors have been investigating that can affect the quality and productivity of truffles to overcome their difficulty in culturing and preserving. To provide the information for their potential applications in medicine as well as in functional food, this review summarizes the relevant literature about the biochemical composition, aromatic and nutritional benefits, and biological properties of truffles. Besides, various factors affecting their productivity and quality as well as the preservation methods are also highlighted.
Collapse
Affiliation(s)
- Heayyean Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea.,Plamica Labs, Batten Hall, 125 Western Ave, Allston, 02163 MA USA
| | - Kyungmin Nam
- Plamica Labs, Batten Hall, 125 Western Ave, Allston, 02163 MA USA
| | - Zahra Zahra
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea.,Department of Civil & Environmental Engineering, University of California, Irvine, CA 92697 USA
| | | |
Collapse
|
8
|
Bedade D, Deska J, Bankar S, Bejar S, Singhal R, Shamekh S. Fermentative production of extracellular amylase from novel amylase producer, Tuber maculatum mycelium, and its characterization. Prep Biochem Biotechnol 2018; 48:549-555. [DOI: 10.1080/10826068.2018.1476876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Dattatray Bedade
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Jan Deska
- Department of Chemistry, School of Chemical Technology, Aalto University, Aalto, Finland
| | - Sandip Bankar
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, Aalto, Finland
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Rekha Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Salem Shamekh
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, Aalto, Finland
- Juva Truffle Center, Juva, Finland
| |
Collapse
|
9
|
|
10
|
Bedade D, Berezina O, Singhal R, Deska J, Shamekh S. Extracellular xylanase production from a new xylanase producer Tuber maculatum mycelium under submerged fermentation and its characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Bedade DK, Singhal RS, Turunen O, Deska J, Shamekh S. Biochemical Characterization of Extracellular Cellulase from Tuber maculatum Mycelium Produced Under Submerged Fermentation. Appl Biochem Biotechnol 2016; 181:772-783. [DOI: 10.1007/s12010-016-2248-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
|