2
|
Surgun-Acar Y, Zemheri-Navruz F. 24-Epibrassinolide promotes arsenic tolerance in Arabidopsis thaliana L. by altering stress responses at biochemical and molecular level. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:12-19. [PMID: 31121523 DOI: 10.1016/j.jplph.2019.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
In this study, the effect of 24-Epibrassinolide (EBL) on antioxidant system in Arabidopsis thaliana were investigated under arsenate [As(V)] stress. The enzyme activity of superoxide dismutase (SOD) and catalase (CAT), total antioxidant status, malondialdehyde (MDA) level and free proline content, as well as the expression levels of SOD isoforms (Cu-ZnSODs, FeSODs and MnSOD), CAT isoforms (CAT1, CAT2 and CAT3), some heat shock proteins (Hsp70-4 and Hsp90-1) and proline biosynthesis (P5CS1 and P5CS2) genes were determined in rosette leaves of eight-week old plants under exposure of 100 and 200 μM As(V) and/or 1 μM EBL treatments for 24 h. Total SOD and CAT enzyme activities increased as a result of 100 μM As(V) + EBL treatments compared to 100 μM As(V) treatment. Total antioxidant and proline levels increased in plants subjected to As(V), and the treatment of EBL together with stress caused further increase. As the MDA level increased in As-treated plants, 100 μM As(V) + EBL treatment decreased MDA level. Transcript levels of CSD1, CSD2, FSD1, FSD2, MSD1 and CAT2 genes increased as a result of combined treatment of EBL and As(V) compared to control and alone stress treatments (except CSD1 gene). Expression level of CSD3, CAT1 and CAT3 genes were downregulated in response to As(V) and/or EBL treatments. EBL application alone and in combination with As(V) elevated the expression level of P5CS1 gene dramatically. Treatment with 100 μM As(V) and EBL increased the transcript level of Hsp70-4 and Hsp90-1 genes in leaves compared to 100 μM As(V) treatment. To our best knowledge, this is the first detailed study to evaluate the improving effect of EBL on antioxidant defense system at biochemical and transcriptional level in A. thaliana plants under As(V) stress.
Collapse
Affiliation(s)
- Yonca Surgun-Acar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey.
| |
Collapse
|
3
|
Kaur H, Sirhindi G, Bhardwaj R, Alyemeni MN, Siddique KHM, Ahmad P. 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea. Sci Rep 2018; 8:8735. [PMID: 29880861 PMCID: PMC5992199 DOI: 10.1038/s41598-018-27032-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Brassinosteroids (BRs) are a group of naturally occurring plant steroid hormones that can induce plant tolerance to various plant stresses by regulating ROS production in cells, but the underlying mechanisms of this scavenging activity by BRs are not well understood. This study investigated the effects of 28-homobrassinolide (28-HBL) seed priming on Brassica juncea seedlings subjected to the combined stress of extreme temperatures (low, 4 °C or high, 44 °C) and salinity (180 mM), either alone or supplemented with 28-HBL treatments (0, 10−6, 10−9, 10−12 M). The combined temperature and salt stress treatments significantly reduced shoot and root lengths, but these improved when supplemented with 28-HBL although the response was dose-dependent. The combined stress alone significantly increased H2O2 content, but was inhibited when supplemented with 28-HBL. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) increased in response to 28-HBL. Overall, the 28-HBL seed priming treatment improved the plant’s potential to combat the toxic effects imposed by the combined temperature and salt stress by tightly regulating the accumulation of ROS, which was reflected in the improved redox state of antioxidants.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Botany, Punjabi University, Patiala, 147002, Punjab, India.,Department of Botanical & Environmental Sciences, GNDU, Amritsar, Punjab, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, 147002, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical & Environmental Sciences, GNDU, Amritsar, Punjab, India
| | - M N Alyemeni
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and UWA School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia. .,Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Nawaz F, Naeem M, Zulfiqar B, Akram A, Ashraf MY, Raheel M, Shabbir RN, Hussain RA, Anwar I, Aurangzaib M. Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15959-15975. [PMID: 28540554 DOI: 10.1007/s11356-017-9163-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/01/2017] [Indexed: 05/25/2023]
Abstract
Brassinosteroids (BRs) are steroidal plant hormones involved in regulation of physiological and molecular processes to ameliorate various biotic and abiotic stresses. Exogenous application of BRs to improve stress tolerance in plants has recently become a high research priority. Several studies have revealed the involvement of these steroidal hormones in upregulation of stress-related defense genes and their cross talk with other metabolic pathways. This is likely to stimulate research on many unanswered questions regarding their role in enhancing the ability of plants to tolerate adverse environmental conditions. Thus, this review appraises new insights on mechanisms mediating BR-regulated changes in plants, focused mainly on their involvement in regulation of physiological and molecular mechanisms under stress conditions. Herein, examples of BR-stimulated modulation of antioxidant defense system and upregulation of transcription factors in plants exposed to various biotic (bacterial, viral, and fungal attack) and abiotic stresses (drought, salinity, heat, low temperature, and heavy metal stress) are discussed. Based on these insights, future research in the current direction can be helpful to increase our understanding of BR-mediated complex and interrelated processes under stress conditions.
Collapse
Affiliation(s)
- Fahim Nawaz
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan.
| | - Muhammad Naeem
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Bilal Zulfiqar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asim Akram
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Yasin Ashraf
- Crop Stress Management Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad Raheel
- Department of Plant Pathology, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rana Nauman Shabbir
- Department of Agronomy, Agriculture College, Bahauddin Zakariya University, Multan, Pakistan
| | - Rai Altaf Hussain
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Irfan Anwar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | |
Collapse
|