1
|
Zhang Z, Dai Y, Xiao Y, Liu Q. Protective effects of catalpol on cardio-cerebrovascular diseases: A comprehensive review. J Pharm Anal 2023; 13:1089-1101. [PMID: 38024856 PMCID: PMC10657971 DOI: 10.1016/j.jpha.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 12/01/2023] Open
Abstract
Catalpol, an iridoid glucoside isolated from Rehmannia glutinosa, has gained attention due to its potential use in treating cardio-cerebrovascular diseases (CVDs). This extensive review delves into recent studies on catalpol's protective properties in relation to various CVDs, such as atherosclerosis, myocardial ischemia, infarction, cardiac hypertrophy, and heart failure. The review also explores the compound's anti-oxidant, anti-inflammatory, and anti-apoptotic characteristics, emphasizing the role of vital signaling pathways, including PGC-1α/TERT, PI3K/Akt, AMPK, Nrf2/HO-1, estrogen receptor (ER), Nox4/NF-κB, and GRP78/PERK. The article discusses emerging findings on catalpol's ability to alleviate diabetic cardiovascular complications, thrombosis, and other cardiovascular-related conditions. Although clinical studies specifically addressing catalpol's impact on CVDs are scarce, the compound's established safety and well-tolerated nature suggest that it could be a valuable treatment alternative for CVD patients. Further investigation into catalpol and related iridoid derivatives may unveil new opportunities for devising natural and efficacious CVD therapies.
Collapse
Affiliation(s)
- Zixi Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yongguo Dai
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, 116044, China
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
2
|
A Study on THE Mechanism of Electroacupuncture to Alleviate Visceral Pain and NGF Expression. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3755439. [PMID: 36275969 PMCID: PMC9586762 DOI: 10.1155/2022/3755439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
Visceral pain is unbearable, and natural methods are needed to relieve it. Electroacupuncture is a relatively new technique that helps relieve visceral pain by improving blood circulation and providing energy to clogged parts of the body. However, its analgesic effect and mechanism in colorectal pain are still unknown. In this study, the visceral pain models of electroacupuncture in rats were compared and discussed, using nanocomponents to stimulate the expression and mechanism of the nerve growth factor in colorectal pain and electroacupuncture and to observe the expression and mechanism of nerve growth factor in visceral pain relief rats induced by nanocomponents and electroacupuncture. The results show that nanocomponents can effectively relieve visceral pain under the action of electroacupuncture. NGF can activate endogenous proliferation, migration, differentiation, and integration. NSC can promote nerve regeneration and recovery after injury.
Collapse
|
3
|
Liu Y, Du J, Fang J, Xiang X, Xu Y, Wang S, Sun H, Fang J. Electroacupuncture inhibits the interaction between peripheral TRPV1 and P2X3 in rats with different pathological pain. Physiol Res 2021; 70:635-647. [PMID: 34062076 PMCID: PMC8820540 DOI: 10.33549/physiolres.934649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic pain is regarded to be one of the common and refractory diseases to cure in the clinic. One hundred Hz electroacupuncture (EA) is commonly used for inflammatory pain and 2 Hz for neuropathic pain possibly by modulating the transient receptor potential vanilloid subtype 1 (TRPV1) or the purinergic P2X3 related pathways. To clarify the mechanism of EA under various conditions of pathological pain, rats received a subcutaneous administration of complete Freund's adjuvant (CFA) for inflammatory pain and spared nerve injury (SNI) for neuropathic pain. The EA was performed at the bilateral ST36 and BL60 1 d after CFA or SNI being successfully established for 3 consecutive days. The mechanical hyperalgesia test was measured at baseline, 1 d after model establishment, 1 d and 3 d after EA. The co-expression changes, co-immunoprecipitation of TRPV1 and P2X3, and spontaneous pain behaviors (SPB) test were performed 3 d after EA stimulation. One hundred Hz EA or 2Hz EA stimulation could effectively down-regulate the hyperalgesia of CFA or SNI rats. The increased co-expression ratio between TRPV1 and P2X3 at the dorsal root ganglion (DRG) in two types of pain could be reduced by 100Hz or 2Hz EA intervention. While 100Hz or 2Hz EA was not able to eliminate the direct physical interaction between TRPV1 and P2X3. Moreover, EA could significantly inhibit the SPB induced by the co-activation of peripheral TRPV1 and P2X3. All results indicated that EA could significantly reduce the hyperalgesia and the SPB, which was partly related to inhibiting the co-expression and indirect interaction between peripheral TRPV1 and P2X3.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Bhattamisra SK, Koh HM, Lim SY, Choudhury H, Pandey M. Molecular and Biochemical Pathways of Catalpol in Alleviating Diabetes Mellitus and Its Complications. Biomolecules 2021; 11:biom11020323. [PMID: 33672590 PMCID: PMC7924042 DOI: 10.3390/biom11020323] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Catalpol isolated from Rehmannia glutinosa is a potent antioxidant and investigated against many disorders. This review appraises the key molecular pathways of catalpol against diabetes mellitus and its complications. Multiple search engines including Google Scholar, PubMed, and Science Direct were used to retrieve publications containing the keywords “Catalpol”, “Type 1 diabetes mellitus”, “Type 2 diabetes mellitus”, and “diabetic complications”. Catalpol promotes IRS-1/PI3K/AKT/GLUT2 activity and suppresses Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose 6-phosphatase (G6Pase) expression in the liver. Catalpol induces myogenesis by increasing MyoD/MyoG/MHC expression and improves mitochondria function through the AMPK/PGC-1α/PPAR-γ and TFAM signaling in skeletal muscles. Catalpol downregulates the pro-inflammatory markers and upregulates the anti-inflammatory markers in adipose tissues. Catalpol exerts antioxidant properties through increasing superoxide dismutase (sod), catalase (cat), and glutathione peroxidase (gsh-px) activity in the pancreas and liver. Catalpol has been shown to have anti-oxidative, anti-inflammatory, anti-apoptosis, and anti-fibrosis properties that in turn bring beneficial effects in diabetic complications. Its nephroprotective effect is related to the modulation of the AGE/RAGE/NF-κB and TGF-β/smad2/3 pathways. Catalpol produces a neuroprotective effect by increasing the expression of protein Kinase-C (PKC) and Cav-1. Furthermore, catalpol exhibits a cardioprotective effect through the apelin/APJ and ROS/NF-κB/Neat1 pathway. Catalpol stimulates proliferation and differentiation of osteoblast cells in high glucose condition. Lastly, catalpol shows its potential in preventing neurodegeneration in the retina with NF-κB downregulation. Overall, catalpol exhibits numerous beneficial effects on diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence: or ; Tel.: +60-3-2731-7310; Fax: +60-3-8656-7229
| | - Hui Min Koh
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.M.K.); (S.Y.L.)
| | - Shin Yean Lim
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.M.K.); (S.Y.L.)
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.C.); (M.P.)
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (H.C.); (M.P.)
| |
Collapse
|
5
|
Wang X, Wu C, Xu M, Cheng C, Liu Y, Di X. Optimisation for simultaneous determination of iridoid glycosides and oligosaccharides in Radix Rehmannia by microwave assisted extraction and HILIC-UHPLC-TQ-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:340-348. [PMID: 31899590 DOI: 10.1002/pca.2900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/02/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
UNLABELLED Hydrophilic iridoid glycosides and oligosaccharides are the major active ingredients of Radix Rehmanniae. Analysis of oligosaccharides is a challenging task because they are highly hydrophilic, with similar chemical structures and absence of chromophore and fluorophore groups. The difficulty for simultaneous analysis of iridoid glycosides and oligosaccharides in Radix Rehmanniae is increased due to the polarity difference between the two types of ingredients. OBJECTIVE To develop a method for simultaneous determination of iridoid glycosides (ajugol, catalpol) and oligosaccharides (sucrose, melibiose, raffinose, mannotriose and stachyose) in Radix Rehmanniae. METHODOLOGY Microwave-assisted extraction (MAE) was established to extract target analytes from Radix Rehmanniae samples using methanol-water (60:40, v/v) as the extraction solvent. Fast separation of seven analytes was achieved by hydrophilic interaction liquid chromatography (HILIC) using an Accucore-150-Amide-HILIC column. Sensitive and selective detection of the analytes was performed by triple quadrupole tandem mass spectrometry (TQ-MS/MS) using multiple reaction monitoring in positive electrospray ionisation mode. RESULTS Good linearities were achieved for all the analytes with the correlation coefficients above 0.9991. The precisions resulted in deviations of less than 5.0% and the recoveries ranged from 93.8% to 105.5%. The established method was successfully applied to the analysis of iridoid glycosides and oligosaccharides in 12 samples of crude and processed Radix Rehmanniae. CONCLUSION A simple, rapid and sensitive method based on MAE combined with HILIC-UHPLC-TQ-MS/MS was developed for simultaneous determination of iridoid glycosides and oligosaccharides in Radix Rehmanniae for the first time. The method exhibited excellent performance with simple sample preparation, short analysis time, high selectivity and sensitivity.
Collapse
Affiliation(s)
- Xin Wang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Cuiting Wu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Ming Xu
- Shenyang Analytical Application Centre, Shimadzu (China) Co. Ltd, 167 Qingnian Street, Shenyang, 110016, China
| | - Cong Cheng
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Youping Liu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xin Di
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
6
|
Catalpol in Diabetes and its Complications: A Review of Pharmacology, Pharmacokinetics, and Safety. Molecules 2019; 24:molecules24183302. [PMID: 31514313 PMCID: PMC6767014 DOI: 10.3390/molecules24183302] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
This review aimed to provide a general view of catalpol in protection against diabetes and diabetic complications, as well as its pharmacokinetics and safety concerns. The following databases were consulted with the retrieval of more than 100 publications through June 2019: PubMed, Chinese National Knowledge Infrastructure, WanFang Data, and web of science. Catalpol exerts an anti-diabetic effect in different animal models with an oral dosage ranging from 2.5 to 200 mg/kg in rats and 10 to 200 mg/kg in mice. Besides, catalpol may prevent the development of diabetic complications in kidney, heart, central nervous system, and bone. The underlying mechanism may be associated with an inhibition of inflammation, oxidative stress, and apoptosis through modulation of various cellular signaling, such as AMPK/PI3K/Akt, PPAR/ACC, JNK/NF-κB, and AGE/RAGE/NOX4 signaling pathways, as well as PKCγ and Cav-1 expression. The pharmacokinetic profile reveals that catalpol could pass the blood-brain barrier and has a potential to be orally administrated. Taken together, catalpol is a well-tolerated natural compound with promising pharmacological actions in protection against diabetes and diabetic complications via multi-targets, offering a novel scaffold for the development of anti-diabetic drug candidate. Further prospective and well-designed clinical trials will shed light on the potential of clinical usage of catalpol.
Collapse
|
7
|
Xiong Y, Shi L, Wang L, Zhou Z, Wang C, Lin Y, Luo D, Qiu J, Chen D. Activation of sirtuin 1 by catalpol-induced down-regulation of microRNA-132 attenuates endoplasmic reticulum stress in colitis. Pharmacol Res 2017; 123:73-82. [DOI: 10.1016/j.phrs.2017.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
|