1
|
Hashmi SZ, Bareth D, Dwivedi J, Kishore D, Alvi PA. Green advancements towards the electrochemical synthesis of heterocycles. RSC Adv 2024; 14:18192-18246. [PMID: 38854834 PMCID: PMC11157331 DOI: 10.1039/d4ra02812k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Heterocyclic chemistry is a large field with diverse applications in the areas of biological research and pharmaceutical advancement. Numerous initiatives have been proposed to further enhance the reaction conditions to reach these compounds without using harmful compounds. This paper focuses on the recent advances in the eco-friendly and green synthetic procedures to synthesize N-, S-, and O-heterocycles. This approach demonstrates considerable potential in accessing such compounds while circumventing the need for stoichiometric quantities of oxidizing/reducing agents or catalysts containing precious metals. Merely employing catalytic quantities of these substances proves sufficient, thereby offering an optimal means of contributing to resource efficiency. Renewable electricity plays a crucial role in generating environmentally friendly electrons (oxidant/reductant) that serve as catalysts for a series of reactions. These reactions involve the production of reactive intermediates, which in turn allow the synthesis of new chemical bonds, enabling beneficial transformations to occur. Furthermore, the utilization of metals as active catalysts in electrochemical activation has been recognized as an effective approach for achieving selective functionalization. The aim of this review was to summarize the electrochemical synthetic procedures so that the undesirable side reactions can be considerably reduced and the practical potential range of the chemical reactions can be expanded significantly.
Collapse
Affiliation(s)
- Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - P A Alvi
- Department of Physical Sciences, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| |
Collapse
|
2
|
Hammami I, Graça MPF, Gavinho SR, Jakka SK, Borges JP, Silva JC, Costa LC. Exploring the Impact of Copper Oxide Substitution on Structure, Morphology, Bioactivity, and Electrical Properties of 45S5 Bioglass ®. Biomimetics (Basel) 2024; 9:213. [PMID: 38667224 PMCID: PMC11048336 DOI: 10.3390/biomimetics9040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
In recent decades, the requirements for implantable medical devices have increased, but the risks of implant rejection still exist. These issues are primarily associated with poor osseointegration, leading to biofilm formation on the implant surface. This study focuses on addressing these issues by developing a biomaterial for implant coatings. 45S5 bioglass® has been widely used in tissue engineering due to its ability to form a hydroxyapatite layer, ensuring a strong bond between the hard tissue and the bioglass. In this context, 45S5 bioglasses®, modified by the incorporation of different amounts of copper oxide, from 0 to 8 mol%, were synthesized by the melt-quenching technique. The incorporation of Cu ions did not show a significant change in the glass structure. Since the bioglass exhibited the capacity for being polarized, thereby promoting the osseointegration effectiveness, the electrical properties of the prepared samples were studied using the impedance spectroscopy method, in the frequency range of 102-106 Hz and temperature range of 200-400 K. The effects of CuO on charge transport mobility were investigated. Additionally, the bioactivity of the modified bioglasses was evaluated through immersion tests in simulated body fluid. The results revealed the initiation of a Ca-P-rich layer formation on the surface within 24 h, indicating the potential of the bioglasses to enhance the bone regeneration process.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Manuel Pedro Fernandes Graça
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Sílvia Rodrigues Gavinho
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Suresh Kumar Jakka
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - João Paulo Borges
- CENIMAT-I3N and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Jorge Carvalho Silva
- CENIMAT-I3N and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Luís Cadillon Costa
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| |
Collapse
|
3
|
Hammami I, Gavinho SR, Pádua AS, Sá-Nogueira I, Silva JC, Borges JP, Valente MA, Graça MPF. Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applications: Fabrication, Structural, Electrical, and Biological Analysis. Int J Mol Sci 2023; 24:10571. [PMID: 37445749 DOI: 10.3390/ijms241310571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Implantology is crucial for restoring aesthetics and masticatory function in oral rehabilitation. Despite its advantages, certain issues, such as bacterial infection, may still arise that hinder osseointegration and result in implant rejection. This work aims to address these challenges by developing a biomaterial for dental implant coating based on 45S5 Bioglass® modified by zirconium insertion. The structural characterization of the glasses, by XRD, showed that the introduction of zirconium in the Bioglass network at a concentration higher than 2 mol% promotes phase separation, with crystal phase formation. Impedance spectroscopy was used, in the frequency range of 102-106 Hz and the temperature range of 200-400 K, to investigate the electrical properties of these Bioglasses, due to their ability to store electrical charges and therefore enhance the osseointegration capacity. The electrical study showed that the presence of crystal phases, in the glass ceramic with 8 mol% of zirconium, led to a significant increase in conductivity. In terms of biological properties, the Bioglasses exhibited an antibacterial effect against Gram-positive and Gram-negative bacteria and did not show cytotoxicity for the Saos-2 cell line at extract concentrations up to 25 mg/mL. Furthermore, the results of the bioactivity test revealed that within 24 h, a CaP-rich layer began to form on the surface of all the samples. According to our results, the incorporation of 2 mol% of ZrO2 into the Bioglass significantly improves its potential as a coating material for dental implants, enhancing both its antibacterial and osteointegration properties.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
4
|
Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implant. Int J Mol Sci 2023; 24:ijms24065244. [PMID: 36982320 PMCID: PMC10049186 DOI: 10.3390/ijms24065244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Dental implants have emerged as one of the most consistent and predictable treatments in the oral surgery field. However, the placement of the implant is sometimes associated with bacterial infection leading to its loss. In this work, we intend to solve this problem through the development of a biomaterial for implant coatings based on 45S5 Bioglass® modified with different amounts of niobium pentoxide (Nb2O5). The structural feature of the glasses, assessed by XRD and FTIR, did not change in spite of Nb2O5 incorporation. The Raman spectra reveal the Nb2O5 incorporation related to the appearance of NbO4 and NbO6 structural units. Since the electrical characteristics of these biomaterials influence their osseointegration ability, AC and DC electrical conductivity were studied by impedance spectroscopy, in the frequency range of 102–106 Hz and temperature range of 200–400 K. The cytotoxicity of glasses was evaluated using the osteosarcoma Saos-2 cells line. The in vitro bioactivity studies and the antibacterial tests against Gram-positive and Gram-negative bacteria revealed that the samples loaded with 2 mol% Nb2O5 had the highest bioactivity and greatest antibacterial effect. Overall, the results showed that the modified 45S5 bioactive glasses can be used as an antibacterial coating material for implants, with high bioactivity, being also non-cytotoxic to mammalian cells.
Collapse
|
5
|
Aslam S, Sbei N, Rani S, Saad M, Fatima A, Ahmed N. Heterocyclic Electrochemistry: Renewable Electricity in the Construction of Heterocycles. ACS OMEGA 2023; 8:6175-6217. [PMID: 36844606 PMCID: PMC9948259 DOI: 10.1021/acsomega.2c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Numerous applications in the realm of biological exploration and drug synthesis can be found in heterocyclic chemistry, which is a vast subject. Many efforts have been developed to further improve the reaction conditions to access this interesting family to prevent employing hazardous ingredients. In this instance, it has been stated that green and environmentally friendly manufacturing methodologies have been introduced to create N-, S-, and O-heterocycles. It appears to be one of the most promising methods to access these types of compounds avoiding use of stoichiometric amounts of oxidizing/reducing species or precious metal catalysts, in which only catalytic amounts are sufficient, and it represent an ideal way of contributing toward the resource economy. Thus, renewable electricity provides clean electrons (oxidant/reductant) that initiate a reaction cascade via producing reactive intermediates that facilitate in building new bonds for valuable chemical transformations. Moreover, electrochemical activation using metals as catalytic mediators has been identified as a more efficient strategy toward selective functionalization. Thus, indirect electrolysis makes the potential range more practical, and less side reactions can occur. The latest developments in using an electrolytic strategy to create N-, S-, and O-heterocycles are the main topic of this mini review, which was documented over the last five years.
Collapse
Affiliation(s)
- Samina Aslam
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
- The Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Najoua Sbei
- Institute
of Nanotechnology, Karlsruhe Institute of Technology, EggensteinLeopoldshafen, 76344KarlsruheGermany
| | - Sadia Rani
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
| | - Manal Saad
- School
of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Aroog Fatima
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
| | - Nisar Ahmed
- School
of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
6
|
El‐Dash YS, Mahmoud AM, El‐Mosallamy SS, El‐Nassan HB. Electrochemical Synthesis of 5‐Benzylidenebarbiturate Derivatives and Their Application as Colorimetric Cyanide Probe. ChemElectroChem 2022. [DOI: 10.1002/celc.202200954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yara S. El‐Dash
- Pharmaceutical Organic Chemistry Department Faculty of Pharmacy Cairo University 33 Kasr El-Aini street Cairo 11562 Egypt
| | - Amr M. Mahmoud
- Analytical Chemistry Department Faculty of Pharmacy Cairo University 33 Kasr El-Aini street Cairo 11562 Egypt
| | - Sally S. El‐Mosallamy
- Analytical Chemistry Department Faculty of Pharmacy Cairo University 33 Kasr El-Aini street Cairo 11562 Egypt
| | - Hala B. El‐Nassan
- Pharmaceutical Organic Chemistry Department Faculty of Pharmacy Cairo University 33 Kasr El-Aini street Cairo 11562 Egypt
| |
Collapse
|
7
|
Osman EO, Mahmoud AM, El-Mosallamy SS, El-Nassan HB. Electrochemical synthesis of tetrahydrobenzo[b]pyran derivatives in deep eutectic solvents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Schotten C, Bourne RA, Kapur N, Nguyen BN, Willans CE. Electrochemical Generation of
N
‐Heterocyclic Carbenes for Use in Synthesis and Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Richard A. Bourne
- School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT UK
| | - Nikil Kapur
- School of Mechanical Engineering University of Leeds Leeds LS2 9JT UK
| | - Bao N. Nguyen
- School of Chemistry University of Leeds Leeds LS2 9JT UK
| | | |
Collapse
|
9
|
Bortolami M, Chiarotto I, Mattiello L, Petrucci R, Rocco D, Vetica F, Feroci M. Organic electrochemistry: Synthesis and functionalization of β-lactams in the twenty-first century. HETEROCYCL COMMUN 2021. [DOI: 10.1515/hc-2020-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Organic electrochemistry is a technique that allows for the heterogeneous redox reactions avoiding both the use of stoichiometric amounts of redox reagents and the resulting formation of stoichiometric by-products. In fact, the redox reagent in these reactions is the electron, which is naturally eco-friendly and produces no side compounds. It is therefore quite obvious that electrochemistry can be classified as a “green” technology. The use of this methodology in the synthesis of β-lactams is not a novelty, but the growing interest in this class of biologically active compounds, due to the discovery of new fields of application (after a moment of decrease in interest due to antibiotic resistance) has been a stimulus for the search for more efficient electrochemical ways to synthesize and transform β-lactams. Thus, this review deals with the twenty-first-century applications of electroorganic technique to the chemistry of β-lactams, by analyzing first the syntheses classified by the type of reactions (cyclization, cycloaddition, etc.) and then by manipulating the β-lactam structure, using it as a synthon. Lastly, the importance of this technique is demonstrated by a study of a pilot plant scale reduction of a cephalosporanic acid derivative to a commercially important antibiotic.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Isabella Chiarotto
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Leonardo Mattiello
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Daniele Rocco
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University , p.le Aldo Moro, 5, I-00185 , Rome , Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| |
Collapse
|
10
|
Vetica F, Bortolami M, Petrucci R, Rocco D, Feroci M. Electrogenerated NHCs in Organic Synthesis: Ionic Liquids vs Organic Solvents Effects. CHEM REC 2021; 21:2130-2147. [PMID: 33507627 DOI: 10.1002/tcr.202000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Indexed: 12/14/2022]
Abstract
In the last twenty years, N-heterocyclic carbenes (NHCs) have been extensively studied for their application as organocatalysts in stereoselective synthesis as well as ligands for transition metals-promoted synthetic methodologies. Derived mainly from azolium salts, NHCs have demonstrated exceptional versatility in their generation usually performed by deprotonation or reduction (chemical or electrochemical). In particular, the generation of NHC under electrochemical conditions, starting from azolium-based ionic liquids, has proven to be a successful green approach and demonstrated wide applicability in organic synthesis. In this Personal Account, the application of electrogenerated NHCs in organic synthesis will be discussed, with a particular attention to the different reactivity in ionic liquids compared to classical organic solvents.
Collapse
Affiliation(s)
- Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Daniele Rocco
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| |
Collapse
|
11
|
Lu W, Gu Y, Hu XY, Tang S, Li X, Wu DY, Yan JW, Mao BW, Tian ZQ. An in-situ Raman spectroscopic study on the cathodic process of EMITFSI ionic liquid on Ag electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Michez R, Doneux T, Buess-Herman C, Luhmer M. NMR Study of the Reductive Decomposition of [BMIm][NTf 2 ] at Gold Electrodes and Indirect Electrochemical Conversion of CO 2. Chemphyschem 2017. [PMID: 28631384 DOI: 10.1002/cphc.201700421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Potential controlled electrolyses of [BMIm][NTf2 ] ionic liquid were performed at a gold cathode under nitrogen atmosphere. The structures of the major conversion products of the BMIm+ cation were elucidated on the basis of 1D and 2D nuclear magnetic resonance (NMR) analyses and gas chromatography (GC) analysis of the volatile compounds. Recombination of the imidazol-2-yl radicals, generated at the electrode by single electron transfer, leads to neutral diastereomeric dimers in equal proportions, with a faradaic efficiency of 80 %, while disproportionation of these radicals and/or reaction with hydrogen atoms adsorbed at the electrode generates a neutral monomer with 20 % faradaic efficiency. Both pathways also yield the N-heterocyclic carbene imidazolin-2-ylidene, which is involved in fast proton exchange with the parent BMIm+ cation. The reductive decomposition products of the BMIm+ cation are no longer detected if the pre-electrolysed sample is reacted with CO2 , which undergoes an indirect reduction and generates the carboxylate adduct.
Collapse
Affiliation(s)
- Roman Michez
- Service de Chimie Analytique et Chimie des Interfaces, CP 255 Faculté des Sciences, Université libre de Bruxelles, 2, Boulevard du Triomphe, 1050, Bruxelles, Belgium
| | - Thomas Doneux
- Service de Chimie Analytique et Chimie des Interfaces, CP 255 Faculté des Sciences, Université libre de Bruxelles, 2, Boulevard du Triomphe, 1050, Bruxelles, Belgium
| | - Claudine Buess-Herman
- Service de Chimie Analytique et Chimie des Interfaces, CP 255 Faculté des Sciences, Université libre de Bruxelles, 2, Boulevard du Triomphe, 1050, Bruxelles, Belgium
| | - Michel Luhmer
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, CP 160/08, Faculté des Sciences, Université libre de Bruxelles, 50, avenue F.-D. Roosevelt, 1050, Bruxelles, Belgium
| |
Collapse
|
13
|
Peixoto D, Figueiredo M, Gawande MB, Corvo MC, Vanhoenacker G, Afonso CAM, Ferreira LM, Branco PS. Developments in the Reactivity of 2-Methylimidazolium Salts. J Org Chem 2017; 82:6232-6241. [DOI: 10.1021/acs.joc.7b00807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniela Peixoto
- LAQV,
REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Margarida Figueiredo
- LAQV,
REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Manoj B. Gawande
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| | - Marta C. Corvo
- CENIMAT
I3N, Faculdade Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gerd Vanhoenacker
- Research Institute for Chromatography, President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Carlos A. M. Afonso
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Luisa M. Ferreira
- LAQV,
REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Paula S. Branco
- LAQV,
REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Kathiresan M, Velayutham D. Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chem Commun (Camb) 2015; 51:17499-516. [DOI: 10.1039/c5cc06961k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed.
Collapse
Affiliation(s)
- Murugavel Kathiresan
- Electro Organic Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630003
- India
| | - David Velayutham
- Electro Organic Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630003
- India
| |
Collapse
|
15
|
Surface chemistry of carbon electrodes in 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid – an in situ infrared study. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.077] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Allen AD, Tidwell TT. Structure and Mechanism in Ketene Chemistry. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-800256-8.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Shi J, Linden A, Heimgartner H. Reactions of Acid Chlorides/Ketenes with 2-Substituted 4,5-Dihydro-4,4-dimethyl-1,3-thiazoles: Formation of Penam Derivatives. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201300165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
de Robillard G, Devillers CH, Kunz D, Cattey H, Digard E, Andrieu J. Electrosynthesis of Imidazolium Carboxylates. Org Lett 2013; 15:4410-3. [DOI: 10.1021/ol401949f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Guillaume de Robillard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, BP 47870, 21078 DIJON Cedex, France, and Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Charles H. Devillers
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, BP 47870, 21078 DIJON Cedex, France, and Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Doris Kunz
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, BP 47870, 21078 DIJON Cedex, France, and Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, BP 47870, 21078 DIJON Cedex, France, and Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Eric Digard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, BP 47870, 21078 DIJON Cedex, France, and Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Jacques Andrieu
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, BP 47870, 21078 DIJON Cedex, France, and Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| |
Collapse
|
19
|
Hans M, Wouters J, Demonceau A, Delaude L. Mechanistic Insight into the Staudinger Reaction Catalyzed by N-Heterocyclic Carbenes. Chemistry 2013; 19:9668-76. [DOI: 10.1002/chem.201204428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/11/2013] [Indexed: 11/07/2022]
|
20
|
Feroci M, Chiarotto I, Inesi A. Internal redox amidation of α,β-unsaturated aldehydes in ionic liquids. The electrochemical route. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
|