1
|
Ali A, Kurome M, Kessler B, Kemter E, Wolf E. What Genetic Modifications of Source Pigs Are Essential and Sufficient for Cell, Tissue, and Organ Xenotransplantation? Transpl Int 2024; 37:13681. [PMID: 39697899 PMCID: PMC11652200 DOI: 10.3389/ti.2024.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
Xenotransplantation of porcine organs has made remarkable progress towards clinical application. A key factor has been the generation of genetically multi-modified source pigs for xenotransplants, protected against immune rejection and coagulation dysregulation. While efficient gene editing tools and multi-cistronic expression cassettes facilitate sophisticated and complex genetic modifications with multiple gene knockouts and protective transgenes, an increasing number of independently segregating genetic units complicates the breeding of the source pigs. Therefore, an optimal combination of essential genetic modifications may be preferable to extensive editing of the source pigs. Here, we discuss the prioritization of genetic modifications to achieve long-term survival and function of xenotransplants and summarise the genotypes that have been most successful for xenogeneic heart, kidney, and islet transplantation. Specific emphasis is given to the choice of the breed/genetic background of the source pigs. Moreover, multimodal deep phenotyping of porcine organs after xenotransplantation into human decedents will be discussed as a strategy for selecting essential genetic modifications of the source pigs. In addition to germ-line gene editing, some of these modifications may also be induced during organ preservation/perfusion, as demonstrated recently by the successful knockdown of swine leukocyte antigens in porcine lungs during ex vivo perfusion.
Collapse
Affiliation(s)
- Asghar Ali
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Mayuko Kurome
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Barbara Kessler
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
2
|
Abstract
End-stage organ failure can result from various preexisting conditions and occurs in patients of all ages, and organ transplantation remains its only treatment. In recent years, extensive research has been done to explore the possibility of transplanting animal organs into humans, a process referred to as xenotransplantation. Due to their matching organ sizes and other anatomical and physiological similarities with humans, pigs are the preferred organ donor species. Organ rejection due to host immune response and possible interspecies infectious pathogen transmission have been the biggest hurdles to xenotransplantation's success. Use of genetically engineered pigs as tissue and organ donors for xenotransplantation has helped to address these hurdles. Although several preclinical trials have been conducted in nonhuman primates, some barriers still exist and demand further efforts. This review focuses on the recent advances and remaining challenges in organ and tissue xenotransplantation.
Collapse
Affiliation(s)
- Asghar Ali
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Mesentery - a 'New' organ. Emerg Top Life Sci 2020; 4:191-206. [PMID: 32539112 DOI: 10.1042/etls20200006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
The mesentery is the organ in which all abdominal digestive organs develop, and which maintains these in systemic continuity in adulthood. Interest in the mesentery was rekindled by advancements of Heald and Hohenberger in colorectal surgery. Conventional descriptions hold there are multiple mesenteries centrally connected to the posterior midline. Recent advances first demonstrated that, distal to the duodenojejunal flexure, the mesentery is a continuous collection of tissues. This observation explained how the small and large intestines are centrally connected, and the anatomy of the associated peritoneal landscape. In turn it prompted recategorisation of the mesentery as an organ. Subsequent work demonstrated the mesentery remains continuous throughout development, and that abdominal digestive organs (i.e. liver, spleen, intestine and pancreas) develop either on, or in it. This relationship is retained into adulthood when abdominal digestive organs are directly connected to the mesentery (i.e. they are 'mesenteric' in embryological origin and anatomical position). Recognition of mesenteric continuity identified the mesenteric model of abdominal anatomy according to which all abdominal abdomino-pelvic organs are organised into either a mesenteric or a non-mesenteric domain. This model explains the positional anatomy of all abdominal digestive organs, and associated vasculature. Moreover, it explains the peritoneal landscape and enables differentiation of peritoneum from the mesentery. Increased scientific focus on the mesentery has identified multiple vital or specialised functions. These vary across time and in anatomical location. The following review demonstrates how recent advances related to the mesentery are re-orientating the study of human biology in general and, by extension, clinical practice.
Collapse
|
4
|
Nagashima H, Matsunari H. Growing human organs in pigs-A dream or reality? Theriogenology 2016; 86:422-6. [PMID: 27156683 DOI: 10.1016/j.theriogenology.2016.04.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 03/14/2016] [Indexed: 11/27/2022]
Abstract
Organ transplantation has been the last line of therapy for saving patients experiencing end-stage organ failure. However, the success of organ transplantation is critically dependent on the availability of donor organs. There are high expectations for research on organ regeneration as a solution to the donor shortage issue faced by transplantation medicine. Thus, generation of human organs from pluripotent stem cells is now one of the ultimate goals of regenerative medicine. In recent years, several approaches to using pluripotent stem cells to generate organs of complex structure and function have been developed. Reproductive biology plays an indispensable role in the development of innovative organ regeneration researches. In this review, we discuss the potential of the animal biotechnology aiming at making human organs using pigs as a platform.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan.
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| |
Collapse
|
5
|
Nagaraju S, Bottino R, Wijkstrom M, Trucco M, Cooper DKC. Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation 2014; 22:7-19. [DOI: 10.1111/xen.12130] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Santosh Nagaraju
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Rita Bottino
- Division of Immunogenetics; Department of Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Massimo Trucco
- Division of Immunogenetics; Department of Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Here, we review the rationale for the use of organs from embryonic donors, antecedent investigations and recent work from our own laboratory, exploring the utility for transplantation of embryonic kidney and pancreas as an organ replacement therapy. RECENT FINDINGS Ultrastructurally precise kidneys differentiate in situ in rats following xenotransplantation in mesentery of embryonic pig renal primordia. The developing organ attracts its blood supply from the host. Engraftment of pig renal primordia requires host immune suppression. However, beta cells originating from embryonic pig pancreas obtained very early following initiation of organogenesis [embryonic day 28 (E28)] engraft long term in nonimmune-suppressed diabetic rats or rhesus macaques. Engraftment of morphologically similar cells originating from adult porcine islets of Langerhans occurs in animals previously transplanted with E28 pig pancreatic primordia. SUMMARY Organ primordia engraft, attract a host vasculature and differentiate following transplantation to ectopic sites. Attempts have been made to exploit these characteristics to achieve clinically relevant endpoints for end-stage renal disease and diabetes mellitus using animal models. We and others have focused on use of the embryonic pig as a donor.
Collapse
|