1
|
Zeng J, Wang C, Ruge F, Ji EK, Martin TA, Sanders AJ, Jia S, Hao C, Jiang WG. EPLIN, a prospective oncogenic molecule with contribution to growth, migration and drug resistance in pancreatic cancer. Sci Rep 2024; 14:30850. [PMID: 39730634 DOI: 10.1038/s41598-024-81485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Most pancreatic cancer patients are diagnosed at advanced stages, with poor survival rates and drug resistance making pancreatic cancer one of the highest causes of cancer death in the UK. Understanding the underlying mechanism behind its carcinogenesis, metastasis and drug resistance has become an essential task for researchers. We have discovered that a well-established tumour suppressor, EPLIN, has an oncogenic rather than suppressive role in pancreatic cancer. Notably, upregulation of EPLIN was observed in pancreatic cancer samples compared to normal samples at RNA and protein levels. Moreover, the presence of EPLIN resulted in poor clinical outcomes in patients. We also report that inhibition of EPLIN led to reduced cellular growth and migration in pancreatic cancer cells. EPLIN regulates expression and phosphorylation levels of several key players in MAPK and PIK3CA-AKT signalling pathways, as well as key contributors of EMT. Furthermore, EPLIN mediates the inhibitory ability PIK3 kinases, MEK and ERK inhibitors have on cell migration. EPLIN was also found to have an impact on pancreatic cancer cells response to chemotherapeutic and EGFR/HER2 targeted therapeutic agents, namely gemcitabine, fluorouracil (5FU) and neratinib (Nerlynx).
Collapse
Affiliation(s)
- Jianyuan Zeng
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff, CF14 4XN, UK
| | - Cai Wang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff, CF14 4XN, UK
| | - Fiona Ruge
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff, CF14 4XN, UK
| | - Edison Ke Ji
- Gastrointestinal Cancer Centre, Peking University Cancer Hospital, Peking University, Fucheng Road, Haidian District, Beijing, China
| | - Tracey A Martin
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff, CF14 4XN, UK
| | - Andrew J Sanders
- School of Education and Science, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham, GL50 4AZ, UK
| | - Shuqin Jia
- Gastrointestinal Cancer Centre, Peking University Cancer Hospital, Peking University, Fucheng Road, Haidian District, Beijing, China
| | - Chunyi Hao
- Gastrointestinal Cancer Centre, Peking University Cancer Hospital, Peking University, Fucheng Road, Haidian District, Beijing, China
| | - Wen G Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff, CF14 4XN, UK.
| |
Collapse
|
2
|
EPLIN, a Putative Tumour Suppressor in Colorectal Cancer, Implications in Drug Resistance. Int J Mol Sci 2022; 23:ijms232315232. [PMID: 36499558 PMCID: PMC9736569 DOI: 10.3390/ijms232315232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Colorectal cancer is a serious threat to human health. Poor prognosis and frequently reported drug resistance urges research into novel biomarkers and mechanisms to aid in the understanding of the development and progression of colorectal cancer and to optimise therapeutic strategies. In the current study, we investigated the roles of a putative tumour suppressor, EPLIN, in colorectal cancer. Our clinical colorectal cancer cohort and online databases revealed a downregulation of EPLIN in colorectal cancer tissues compared with normal tissues. The reduced expression of EPLIN was associated with poor clinical outcomes of patients. In vitro cellular function assays showed that EPLIN elicited an inhibitory effect on cellular growth, adhesion, migration and invasion. Utilising a protein microarray on protein samples from normal and tumour patient tissues suggested HSP60, Her2 and other signalling events were novel potential interacting partners of EPLIN. It was further revealed that EPLIN and HSP60 were negative regulators of Her2 in colorectal cancer cells. The clinical cohort also demonstrated that expression of HSP60 and Her2 affected clinical outcomes, but most interestingly the combination of EPLIN, HSP60 and Her2 was able to identify patients with the most unfavourable clinical outcome by independently predicting patient overall survival and disease free survival. Furthermore, EPLIN and HSP60 exhibited potential to regulate cellular response to chemotherapeutic and EGFR/Her2 targeted therapeutic agents. In conclusion, EPLIN is an important prognostic factor for patients with colon cancer and reduced EPLIN in CRC contributes to aggressive traits of CRC cells and their responses to chemotherapeutic drugs. Collectively, EPLIN is a pivotal factor for the development and progression of colorectal cancer and has important clinical and therapeutic values in this cancer type.
Collapse
|
3
|
Zeng J, Jiang WG, Sanders AJ. Epithelial Protein Lost in Neoplasm, EPLIN, the Cellular and Molecular Prospects in Cancers. Biomolecules 2021; 11:biom11071038. [PMID: 34356662 PMCID: PMC8301816 DOI: 10.3390/biom11071038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Epithelial Protein Lost In Neoplasm (EPLIN), also known as LIMA1 (LIM Domain And Actin Binding 1), was first discovered as a protein differentially expressed in normal and cancerous cell lines. It is now known to be key to the progression and metastasis of certain solid tumours. Despite a slow pace in understanding the biological role in cells and body systems, as well as its clinical implications in the early years since its discovery, recent years have witnessed a rapid progress in understanding the mechanisms of this protein in cells, diseases and indeed the body. EPLIN has drawn more attention over the past few years with its roles expanding from cell migration and cytoskeletal dynamics, to cell cycle, gene regulation, angiogenesis/lymphangiogenesis and lipid metabolism. This concise review summarises and discusses the recent progress in understanding EPLIN in biological processes and its implications in cancer.
Collapse
|
4
|
EPLIN Expression in Gastric Cancer and Impact on Prognosis and Chemoresistance. Biomolecules 2021; 11:biom11040547. [PMID: 33917939 PMCID: PMC8068319 DOI: 10.3390/biom11040547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 01/17/2023] Open
Abstract
Epithelial protein lost in neoplasm (EPLIN) has been implicated as a suppressor of cancer progression. The current study explored EPLIN expression in clinical gastric cancer and its association with chemotherapy resistance. EPLIN transcript expression, in conjunction with patient clinicopathological information and responsiveness to neoadjuvant chemotherapy (NAC), was explored in two gastric cancer cohorts collected from the Beijing Cancer Hospital. Kaplan-Meier survival analysis was undertaken to explore EPLIN association with patient survival. Reduced EPLIN expression was associated with significant or near significant reductions of overall, disease-free, first progression or post-progression survival in the larger host cohort and Kaplan Meier plotter datasets. In the larger cohort EPLIN expression was significantly higher in the combined T1 + T2 gastric cancer group compared to the T3 + T4 group and identified to be an independent prognostic factor of disease-free survival and overall survival by multivariate analysis. In the smaller, NAC cohort, EPLIN expression was found to be significantly lower in tumour tissues than in paratumour tissues. EPLIN expression was significantly associated with responsiveness to chemotherapy which contributes to overall survival. Together, EPLIN appears to be a prognostic factor and may be associated with patient sensitivity to NAC.
Collapse
|
5
|
Lee DY, Kang Y, Im NR, Kim B, Kwon TK, Jung KY, Baek SK. Actin-Associated Gene Expression is Associated with Early Regional Metastasis of Tongue Cancer. Laryngoscope 2020; 131:813-819. [PMID: 33237593 DOI: 10.1002/lary.29025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We aimed to analyze gene expression profile of tongue cancer associated with early lymph node metastasis using the cancer genome atlas (TCGA) data. STUDY DESIGN Basic research. METHODS A total of 515 patients with matched RNAseq data of primary tumor and clinical data from TCGA data were extracted. To compare gene expression profile between early T-stage tongue cancer with cervical lymph node metastasis and late T-stage tongue cancer without cervical metastasis, genomic data of following two groups was assessed; 1) group 1: T1/2 and N2/3 (n = 41), 2) group 2: T4 and N0 (n = 65). Using R and limma package in bioconductor program, differentially expressed genes (DEGs) were extracted. Gene ontology and pathway enrichment analysis were performed using the DAVID online tool. FFPE tissue of 285 patients were evaluated for the validation of relevant genes by imunofluorescence (IF) and immunohistochemical (IHC) stain. RESULTS A total of 225 DEGs were found, and 50 genes were highly significant with absolute fold change over eight. Gene ontology and pathway enrichment analysis revealed that most of the upregulated genes were associated with actin cytoskeleton and included following genes: ANKRD23, NO3, PDLIM3, MUSTN1, TNNT3, MYBPC1, MB, MYH3, TTN, ACTA1, and ACTC1. When comparing tongue cancer with cN0pN0 vs. pN0pN+ using the total tongue cancer cohort of TCGA, ACTA1 was the only parameter which was associated with hidden lymph node metastasis in T1/2 (P = .019). Perineural invasion was significantly associated with high expression of ACTA1 (P < .001). IF and IHC analysis revealed that actin was overexpressed, while E-cadherin and N-cadherin were not significantly different. CONCLUSIONS Actin associated genes, especially overexpression of ACTA1 may be associated with early regional metastasis of tongue cancer. LEVEL OF EVIDENCE 3 Laryngoscope, 131:813-819, 2021.
Collapse
Affiliation(s)
- Doh Young Lee
- Department of Otorhinolaryngology Head and Neck Surgery, Seoul Nation University Boramae Medical Center, Seoul, South Korea
| | - Young Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University Hospital, Seoul, South Korea
| | - Nu-Ri Im
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Tack-Kyun Kwon
- Department of Otorhinolaryngology Head and Neck Surgery, Seoul Nation University Boramae Medical Center, Seoul, South Korea
| | - Kwang-Yoon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Seung-Kuk Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
6
|
p53 mediates the suppression of cancer cell invasion by inducing LIMA1/EPLIN. Cancer Lett 2017; 390:58-66. [PMID: 28093207 DOI: 10.1016/j.canlet.2016.12.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/07/2016] [Accepted: 12/29/2016] [Indexed: 12/16/2022]
Abstract
The tumor suppressor gene p53 is frequently mutated in human cancer. p53 executes various functions, such as apoptosis induction and cell cycle arrest, by modulating transcriptional regulation. In this study, LIM domain and Actin-binding protein 1 (LIMA1) was identified as a target of the p53 family using a cDNA microarray. We also evaluated genome-wide occupancy of the p53 protein by performing chromatin immunoprecipitation-sequencing (ChIP-seq) and identified two p53 response elements in the LIMA1 gene. LIMA1 protein levels were increased by treatment with nutlin-3a, a small molecule that activates endogenous p53. In addition, LIMA1 expression was significantly downregulated in cancers compared with normal tissues. Knockdown of LIMA1 significantly enhanced cancer cell invasion and partially inhibited p53-induced suppression of cell invasion. Furthermore, low expression of LIMA1 in cancer patients correlated with decreased survival and poor prognosis. Thus, p53-induced LIMA1 inhibits cell invasion, and the downregulation of LIMA1 caused by p53 mutation results in decreased survival in cancer patients. Collectively, this study reveals the molecular mechanism of LIMA1 downregulation in various cancers and suggests that LIMA1 may be a novel prognostic predictor and a therapeutic target for cancer.
Collapse
|
7
|
Abstract
Treatment of malignant disease is of paramount importance in modern medicine. In 2012, it was estimated that 162,000 people died from cancer in the UK which illustrates a fundamental problem. Traditional treatments for cancer have various drawbacks, and this creates a considerable need for specific, molecular targets to overcome cancer spread. Epithelial protein lost in neoplasm (EPLIN) is an actin-associated molecule which has been implicated in the development and progression of various cancers including breast, prostate, oesophageal and lung where EPLIN expression is frequently lost as the cancer progresses. EPLIN is important in the regulation of actin dynamics and has multiple associations at epithelial cells junctions. Thus, EPLIN loss in cancer may have significant effects on cancer cell migration and invasion, increasing metastatic potential. Overexpression of EPLIN has proved to be an effective tool for manipulating cancerous traits such as reducing cell growth and cell motility and rendering cells less invasive illustrating the therapeutic potential of EPLIN. Here, we review the current state of knowledge of EPLIN, highlighting EPLIN involvement in regulating cytoskeletal dynamics, signalling pathways and implications in cancer and metastasis.
Collapse
Affiliation(s)
- Ross J Collins
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Rachel Hargest
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Malcolm D Mason
- Department of Clinical Oncology, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|