1
|
Puentes-Cala E, Atehortúa-Bueno M, Tapia-Perdomo V, Navarro-Escalante L, Hernández-Torres J, Castillo-Villamizar G. First insights into the gut microbiome of Diatraea saccharalis: From a sugarcane pest to a reservoir of new bacteria with biotechnological potential. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1027527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
A country’s biodiversity is a key resource for the development of a sustainable bioeconomy. However, often the most biodiverse countries on the planet hardly profit from their biological diversity. On the contrary, occasionally components of that biodiversity become a threat to society and its food sustainability. That is the case of the sugarcane borer Diatraea saccharalis. Here, the analysis of the bacteria associated with the digestive tract of D. saccharalis reveals a rich and diverse microbiota. Two types of diets were analyzed under laboratory conditions. The metataxonomic analysis revealed a number of taxa common to most of the larval pools analyzed with relative abundances exceeding 5%, and five families of bacteria which have also been reported in the gut of another Lepidoptera. A large fraction of microorganisms detected by amplicon sequencing were considered to be rare and difficult to cultivate. However, among the cultivable microorganisms, 12 strains with relevant biotechnological features were identified. The strain that showed the highest cellulolytic activity (GCEP-101) was genome sequenced. The analysis of the GCEP-101 complete genome revealed that the values of 16S rRNA identity, the Average Nucleotide Identity, and the digital DNA–DNA hybridization place the strain as a candidate for a new species within the genus Pseudomonas. Moreover, the genome annotation of the putative new species evidenced the presence of genes associated with cellulose degradation, revealing the hidden potential of the pest as a reservoir of biotechnologically relevant microorganisms.
Collapse
|
2
|
Yi X, Guo J, Wang M, Xue C, Ju M. Inter-trophic Interaction of Gut Microbiota in a Tripartite System. MICROBIAL ECOLOGY 2021; 81:1075-1087. [PMID: 33190166 DOI: 10.1007/s00248-020-01640-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Gut microbiota can be transmitted either environmentally or socially and vertically at intraspecific level; however, whether gut microbiota interact along trophic levels has been largely overlooked. Here, we characterized the gut bacterial communities of weevil larvae of Curculio arakawai that infest acorns of Mongolian oak (Quercus mongolica) as well as acorn-eating mammals, Siberian chipmunk (Tamias sibiricus), to test whether consumption of seed-borne larvae remodels the gut bacterial communities of T. sibiricus. Ingestion of weevil larvae of C. arakawai significantly altered the gut bacterial communities of T. sibiricus. Consequently, T. sibiricus fed larvae of C. arakawai showed higher capability to counter the negative effects of tannins, in terms of body weight maintenance, acorn consumption, N content in feces, urine pH, and blood ALT activity. Our results may first show that seed-borne insects as hidden players have a potential to alter the gut microbiota of seed predators in the tripartite system.
Collapse
Affiliation(s)
- Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Jiawei Guo
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Minghui Wang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Chao Xue
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Mengyao Ju
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
3
|
Barbosa KL, Malta VRDS, Machado SS, Leal Junior GA, da Silva APV, Almeida RMRG, da Luz JMR. Bacterial cellulase from the intestinal tract of the sugarcane borer. Int J Biol Macromol 2020; 161:441-448. [PMID: 32526296 DOI: 10.1016/j.ijbiomac.2020.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/01/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
Cellulolytic enzymes have wide use in several industrial segments (e.g. biofuels, pulp and paper, food, and cosmetics). However, one of the challenges is their large-scale production with high specific activity to eliminate the dependence of the purchase of enzymatic cocktails produced by commercial parties. The aims of this study were (1) isolation, selection, and partial characterization of bacterial cellulases present in the intestinal tract of the sugarcane borer and (2) to identify cellulase-producing bacteria by analyzing the 16S rDNA gene. Cellulase production and purification assays resulted in similar electrophoretic profiles between four bacterial strains. These strains were identified as Klebsiella pneumoniae, Klebsiella sp., and Bacillus sp. K. pneumoniae was the main cellulase-producing microorganism. Our results show the possibility of finding cellulolytic microorganisms that inhabit the gut of herbivorous animals, especially those that are predators of important crops of economic value. Furthermore, K. pneumoniae cellulase is of medical importance. In hospitals, health professionals, hospital technicians, patients and visitors wear clothes containing cellulose. Thus, K. pneumoniae within hospitals can contaminate these clothes and be spread to the environment. In that case, it would be important for the hospital's chemical sterilization products to have at least one cellulase inhibitor.
Collapse
Affiliation(s)
- Kledson Lopes Barbosa
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus Maceió, 57072-900 Maceió, AL, Brazil.
| | | | - Sonia Salgueiro Machado
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus Maceió, 57072-900 Maceió, AL, Brazil
| | | | | | | | - Jose Maria Rodrigues da Luz
- Federal University of Alagoas, Institute of Pharmaceutical Science, Postgraduate Multicenter Program of Biochemistry and Molecular Biology, Campus Maceió, 57072-900 Maceió, AL, Brazil
| |
Collapse
|
4
|
Qadri M, Short S, Gast K, Hernandez J, Wong ACN. Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.547751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
5
|
Zeng W, Liu B, Zhong J, Li Q, Li Z. A Natural High-Sugar Diet Has Different Effects on the Prokaryotic Community Structures of Lower and Higher Termites (Blattaria). ENVIRONMENTAL ENTOMOLOGY 2020; 49:21-32. [PMID: 31782953 DOI: 10.1093/ee/nvz130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 06/10/2023]
Abstract
The lignocellulosic digestive symbiosis in termites is a dynamic survival adaptation system. While the contribution of hereditary and habitat factors to the development of the symbiotic bacterial community of termites had been confirmed, the manner in which these factors affect functional synergism among different bacterial lineages has still not been fully elucidated. Therefore, the 16S rRNA gene libraries of Odontotermes formosanus Shiraki (Blattodea: Termitidae) and Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) sampled from sugarcane fields (high sugar) or pine tree forests (no free sugar) were sequenced. The results verify that the prokaryotic community structures of termites could be significantly reshaped by native dietary isolation within a species. Although the most dominant phyla are convergent in all samples, their relative abundances in these two termite species exhibited a reverse variation pattern when the termite hosts were fed on the high-sugar diet. Furthermore, we showed that the taxonomic composition of the dominant phyla at the family or genus level differentiate depending on the diet and the host phylogeny. We hypothesize that the flexible bacterial assemblages at low taxonomic level might exert variable functional collaboration to accommodate to high-sugar diet. In addition, the functional predictions of Tax4Fun suggest a stable metabolic functional structure of the microbial communities of the termites in both different diet habitats and taxonomy. We propose that the symbiotic bacterial community in different host termites developed a different functional synergistic pattern, which may be essential to maintain the stability of the overall metabolic function for the survival of termites.
Collapse
Affiliation(s)
- Wenhui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Bingrong Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Junhong Zhong
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Qiujian Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
6
|
Meng F, Bar-Shmuel N, Shavit R, Behar A, Segoli M. Gut bacteria of weevils developing on plant roots under extreme desert conditions. BMC Microbiol 2019; 19:311. [PMID: 31888482 PMCID: PMC6937996 DOI: 10.1186/s12866-019-1690-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many phytophagous insects, whose diet is generally nitrogen-poor, rely on gut bacteria to compensate for nutritional deficits. Accordingly, we hypothesized that insects in desert environments may evolve associations with gut bacteria to adapt to the extremely low nutrient availability. For this, we conducted a systematic survey of bacterial communities in the guts of weevils developing inside mud chambers affixed to plant roots in the Negev Desert of Israel, based on 16S rRNA gene amplicon sequencing. RESULTS Our analyses revealed that gut bacterial communities in weevil larvae were similar across a wide geographical range, but differed significantly from those of the mud chambers and of the surrounding soils. Nevertheless, a high proportion of bacteria (including all of the core bacteria) found in the weevils were also detected in the mud chambers and soils at low relative abundances. The genus Citrobacter (of the Enterobacteriaceae family) was the predominant group in the guts of all individual weevils. The relative abundance of Citrobacter significantly decreased at the pupal and adult stages, while bacterial diversity increased. A mini literature survey revealed that members of the genus Citrobacter are associated with nitrogen fixation, recycling of uric acid nitrogen, and cellulose degradation in different insects. CONCLUSIONS The results suggest that although weevils could potentially acquire their gut bacteria from the soil, weevil host internal factors, rather than external environmental factors, were more important in shaping their gut bacterial communities, and suggest a major role for Citrobacter in weevil nutrition in this challenging environment. This study highlights the potential involvement of gut bacteria in the adaptation of insects to nutritional deficiencies under extreme desert conditions.
Collapse
Affiliation(s)
- Fengqun Meng
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| | - Nitsan Bar-Shmuel
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Adi Behar
- Division of Parasitology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Michal Segoli
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
7
|
Lopez-Ordonez T, Flores-López CA, Montejo-Lopez R, Cruz-Hernandez A, Conners EE. Cultivable Bacterial Diversity in the Gut of the Chagas Disease Vector Triatoma dimidiata: Identification of Possible Bacterial Candidates for a Paratransgenesis Approach. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2017.00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Abstract
Beetles, representing the majority of the insect species diversity, are characterized by thick and hard cuticle, which plays important roles for their environmental adaptation and underpins their inordinate diversity and prosperity. Here, we report a bacterial endosymbiont extremely specialized for sustaining beetle's cuticle formation. Many weevils are associated with a γ-proteobacterial endosymbiont lineage Nardonella, whose evolutionary origin is estimated as older than 100 million years, but its functional aspect has been elusive. Sequencing of Nardonella genomes from diverse weevils unveiled drastic size reduction to 0.2 Mb, in which minimal complete gene sets for bacterial replication, transcription, and translation were present but almost all of the other metabolic pathway genes were missing. Notably, the only metabolic pathway retained in the Nardonella genomes was the tyrosine synthesis pathway, identifying tyrosine provisioning as Nardonella's sole biological role. Weevils are armored with hard cuticle, tyrosine is the principal precursor for cuticle formation, and experimental suppression of Nardonella resulted in emergence of reddish and soft weevils with low tyrosine titer, confirming the importance of Nardonella-mediated tyrosine production for host's cuticle formation and hardening. Notably, Nardonella's tyrosine synthesis pathway was incomplete, lacking the final step transaminase gene. RNA sequencing identified host's aminotransferase genes up-regulated in the bacteriome. RNA interference targeting the aminotransferase genes induced reddish and soft weevils with low tyrosine titer, verifying host's final step regulation of the tyrosine synthesis pathway. Our finding highlights an impressively intimate and focused aspect of the host-symbiont metabolic integrity via streamlined evolution for a single biological function of ecological relevance.
Collapse
|
9
|
Enrichment of microbial communities tolerant to the ionic liquids tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate. Appl Microbiol Biotechnol 2016; 100:5639-52. [DOI: 10.1007/s00253-016-7525-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/21/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022]
|
10
|
Berasategui A, Shukla S, Salem H, Kaltenpoth M. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 2016; 100:1567-1577. [PMID: 26659224 PMCID: PMC4737797 DOI: 10.1007/s00253-015-7186-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022]
Abstract
Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.
Collapse
Affiliation(s)
- Aileen Berasategui
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Biochemistry Department, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Shantanu Shukla
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Hassan Salem
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Department for Evolutionary Ecology, Institute of Zoology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
11
|
Pedezzi R, Fonseca FPP, Santos Júnior CD, Kishi LT, Terra WR, Henrique-Silva F. A novel β-fructofuranosidase in Coleoptera: Characterization of a β-fructofuranosidase from the sugarcane weevil, Sphenophorus levis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 55:31-38. [PMID: 25447033 DOI: 10.1016/j.ibmb.2014.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/06/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
β-fructofuranosidases or invertases (EC 3.2.1.26) catalyze the hydrolysis of sucrose into fructose and glucose. β-fructofuranosidases have been widely described in microorganisms, but were not known in the animal kingdom until very recently. There are studies reporting lepidopteran β-fructofuranosidases, but no β-fructofuranosidase gene sequence or encoding transcript has previously been identified in beetles. Considering the scarcity of functional studies on insect β-fructofuranosidases and their apparent non-occurrence among coleopterans, the aim of the present study was to investigate the occurrence and characterize a β-fructofuranosidase transcript identified in a cDNA library from the sugarcane weevil, Sphenophorus levis (Curculionidae). To validate that the β-fructofuranosidase sequence (herein denominated Sl-β-fruct) is indeed encoded by the S. levis genome, PCRs were performed using genomic DNA extracted from the larval fat body as well as DNA from the midgut with microbial content. Amplification of Sl-β-fruct gene using larval fat body DNA indicated its presence in the insect's genomic DNA. The Sl-β-fruct gene was cloned in Pichia pastoris to produce the recombinant enzyme (rSl-β-fruct). Molecular weight of the recombinant protein was about 64 kDa, indicating possible glycosylation, since the theoretical weight was 54.8 kDa. The substrate specificity test revealed that rSl-β-fruct hydrolyzes sucrose and raffinose, but not melibiose or maltose, thereby confirming invertase activity. The pH curve revealed greatest activity at pH 5.0, demonstrating rSl-β-fruct to be an acidic β-fructofuranosidase. Quantitative PCR (qRT-PCR) analyses indicated that the production of mRNA only occurs in the midgut and reaches the greatest expression level in 30-day-old larvae, which is the expected pattern for digestive enzymes. Chromatography of glycosidases from S. levis midguts showed two enzymes acting as β-fructofuranosidase, indicating the presence of a Sl-β-fruct isoform or a β-fructofuranosidase from insect intestinal microbiota. Moreover, it was found that α-glucosidases do not act on sucrose hydrolysis. Phylogenetic analyses indicated this enzyme to be similar to enzymes found in other coleopteran and lepidopteran β-fructofuranosidases, but also closely similar to bacterial enzymes, suggesting potential horizontal gene transfer. Despite this, the enzyme seems to be restricted to different groups of bacteria, which suggests distinct origin events. The present study expands the concept of the occurrence of β-fructofuranosidase in insects. Despite the few descriptions of this gene in the animal kingdom, it is possible to state that β-fructofuranosidase is crucial to the establishment of some insects throughout their evolutionary history, especially members of the Lepidoptera and Coleoptera clades.
Collapse
Affiliation(s)
- Rafael Pedezzi
- Department of Genetics and Evolution, Laboratory of Molecular Biology, Federal University of São Carlos, CEP: 13565-905, São Carlos, Brazil
| | - Fernando P P Fonseca
- Department of Genetics and Evolution, Laboratory of Molecular Biology, Federal University of São Carlos, CEP: 13565-905, São Carlos, Brazil
| | - Célio Dias Santos Júnior
- Department of Genetics and Evolution, Laboratory of Molecular Biology, Federal University of São Carlos, CEP: 13565-905, São Carlos, Brazil
| | - Luciano T Kishi
- Department of Genetics and Evolution, Laboratory of Molecular Biology, Federal University of São Carlos, CEP: 13565-905, São Carlos, Brazil
| | - Walter R Terra
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, CEP: 26077 05513-970, São Paulo, Brazil
| | - Flávio Henrique-Silva
- Department of Genetics and Evolution, Laboratory of Molecular Biology, Federal University of São Carlos, CEP: 13565-905, São Carlos, Brazil.
| |
Collapse
|
12
|
Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol 2014; 14:136. [PMID: 24884866 PMCID: PMC4060583 DOI: 10.1186/1471-2180-14-136] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/25/2014] [Indexed: 01/21/2023] Open
Abstract
Background The red palm weevil (RPW) Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) is one of the major pests of palms. The larvae bore into the palm trunk and feed on the palm tender tissues and sap, leading the host tree to death. The gut microbiota of insects plays a remarkable role in the host life and understanding the relationship dynamics between insects and their microbiota may improve the biological control of insect pests. The purpose of this study was to analyse the diversity of the gut microbiota of field-caught RPW larvae sampled in Sicily (Italy). Results The 16S rRNA gene-based Temporal Thermal Gradient Gel Electrophoresis (TTGE) of the gut microbiota of RPW field-trapped larvae revealed low bacterial diversity and stability of the community over seasons and among pools of larvae from different host trees. Pyrosequencing of the 16S rRNA gene V3 region confirmed low complexity and assigned 98% of the 75,564 reads to only three phyla: Proteobacteria (64.7%) Bacteroidetes (23.6%) and Firmicutes (9.6%) and three main families [Enterobacteriaceae (61.5%), Porphyromonadaceae (22.1%) and Streptococcaceae (8.9%)]. More than half of the reads could be classified at the genus level and eight bacterial genera were detected in the larval RPW gut at an abundance ≥1%: Dysgonomonas (21.8%), Lactococcus (8.9%), Salmonella (6.8%), Enterobacter (3.8%), Budvicia (2.8%), Entomoplasma (1.4%), Bacteroides (1.3%) and Comamonas (1%). High abundance of Enterobacteriaceae was also detected by culturing under aerobic conditions. Unexpectedly, acetic acid bacteria (AAB), that are known to establish symbiotic associations with insects relying on sugar-based diets, were not detected. Conclusions The RPW gut microbiota is composed mainly of facultative and obligate anaerobic bacteria with a fermentative metabolism. These bacteria are supposedly responsible for palm tissue fermentation in the tunnels where RPW larvae thrive and might have a key role in the insect nutrition, and other functions that need to be investigated.
Collapse
Affiliation(s)
| | | | | | | | - Paola Quatrini
- Department STEBICEF, University of Palermo Viale delle Scienze Ed,16, Palermo 90128, Italy.
| |
Collapse
|
13
|
Jia S, Zhang X, Zhang G, Yin A, Zhang S, Li F, Wang L, Zhao D, Yun Q, Tala, Wang J, Sun G, Baabdullah M, Yu X, Hu S, Al-Mssallem IS, Yu J. Seasonally variable intestinal metagenomes of the red palm weevil (Rhynchophorus ferrugineus). Environ Microbiol 2013; 15:3020-9. [PMID: 24102776 PMCID: PMC4253082 DOI: 10.1111/1462-2920.12262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 06/26/2013] [Accepted: 08/23/2013] [Indexed: 11/29/2022]
Abstract
The intestinal microbes residing in the red palm weevil (RPW, Rhynchophorus ferrugineus) larva consume tender interior fibrous tissues of date palm trunks. The understanding of such microbiota at molecular level provides vital clues for the biological control of this devastating pest. Using pyrosequencing and shotgun strategy, we first study taxonomic profiles of the microbiota sampled at different months (March, July and November), and then confirm the impact of high-temperature stress on the microbial populations based on data from 16S rRNA amplicons using both field and laboratory samples. We further identify Klebsiella pneumoniae in November and Lactococcus lactis in July as the dominant species of the microbiota. We find that the RPW gut microbiota degrades polysaccharides and sucrose with hydrolases and that different active bacterial species in November and July are responsible for the symbiotic relationship between the microbiota and the host. Our results provide vital information for pest control and cellulolytic bacterial species characterization.
Collapse
Affiliation(s)
- Shangang Jia
- Joint Center for Genomics Research, King Abdulaziz City for Science and Technology and Chinese Academy of Sciences, Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guangyu Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - An Yin
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Sun Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fusen Li
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Duojun Zhao
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Quanzheng Yun
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Tala
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jixiang Wang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Gaoyuan Sun
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Mohammed Baabdullah
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
| | - Xiaoguang Yu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ibrahim S Al-Mssallem
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,Department of Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Hofuf, Kingdom of Saudi Arabia
| | - Jun Yu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia.,CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Lu F, Kang X, Jiang C, Lou B, Jiang M, Way MO. Isolation and characterization of bacteria from midgut of the rice water weevil (Coleoptera: Curculionidae). ENVIRONMENTAL ENTOMOLOGY 2013; 42:874-881. [PMID: 24331600 DOI: 10.1603/en13111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gut bacteria are known to play important and often essential roles in the biology of insects. Theoretically, they can be genetically manipulated, then reintroduced into insects to negatively modify specific biological features. The weevil superfamily Curculionoidea is one of the most species-rich and successful animal groups on earth, but currently the overall knowledge of the bacterial communities in weevils and their associations with hosts is still limited. In this study, we isolated and characterized the bacteria in the midgut of an invasive weevil, Lissorhoptrus oryzophilus Kuschel, by culturing methods. Female adults of this weevil were collected from four different geographic regions of the United States and mainland China. Sequencing of the bacterial 16S rRNA amplicons demonstrated that the major culturable gut bacteria of rice water weevil are γ-proteobacteria and Bacilli. The gut bacterial composition differs among regions, with many of the bacteria isolated from only a single region while several were detected from more than one region. Overall, the diversity of gut bacteria in rice water weevil is relatively low. The possible origins of certain bacteria are discussed in relation to the weevil, rice plant, and bacteria.
Collapse
Affiliation(s)
- Fang Lu
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
15
|
Saha S, Hunter WB, Reese J, Morgan JK, Marutani-Hert M, Huang H, Lindeberg M. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome. PLoS One 2012; 7:e50067. [PMID: 23166822 PMCID: PMC3500351 DOI: 10.1371/journal.pone.0050067] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/17/2012] [Indexed: 02/03/2023] Open
Abstract
Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.
Collapse
Affiliation(s)
- Surya Saha
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Justin Reese
- Genformatic, LLC., Alpharetta, Georgia, United States of America
| | - J. Kent Morgan
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Mizuri Marutani-Hert
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Hong Huang
- School of Information, University of South Florida, Tampa, Florida, United States of America
| | - Magdalen Lindeberg
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|