1
|
Zhou XS, Chen C, Li TH, Tang JJ, Zhu BJ, Wei GQ, Qian C, Liu CL, Wang L. A QM protein from Bombyx mori negatively regulates prophenoloxidase activation and melanization by interacting with Jun protein. INSECT MOLECULAR BIOLOGY 2019; 28:578-590. [PMID: 30737848 DOI: 10.1111/imb.12573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The QM gene that encodes for the ribosomal protein L10 was firstly identified from human tumour cells as a tumour suppressor. In this study, a QM gene was identified in silkworm Bombyx mori (BmQM) and its immunomodulatory function was explored. BmQM messenger RNA (mRNA) and protein were highly expressed in the silk gland and fat body, and expressed in all stages of silkworm growth. After challenged with four different microorganisms, the expression levels of BmQM mRNA in fat body or haemocytes were significantly upregulated compared with the control. After knock-down of BmQM gene, the expressions of some immune genes (PGRPS6, Gloverin0, Lysozyme and Moricin) were affected, and the transcripts of prophenoloxidase1 and prophenoloxidase2 have different degrees of change. The phenoloxidase activity was significantly reduced when the purified recombinant BmQM protein was injected. Recombinant BmQM protein inhibited systemic melanization and suppressed prophenoloxidase activation stimulated by Micrococcus luteus, but it did not affect phenoloxidase activity. Far-western blotting assays showed that the BmQM protein interacted with silkworm BmJun protein, which negatively regulates AP-1 expression. Our results indicated that BmQM protein could affect some immune gene expression and negatively regulate the prophenoloxidase-activating system, and it may play an important role in regulation of the innate immunity in insects.
Collapse
Affiliation(s)
- X-S Zhou
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - C Chen
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - T-H Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - J-J Tang
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - B-J Zhu
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - G-Q Wei
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - C Qian
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - C-L Liu
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - L Wang
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| |
Collapse
|
2
|
Shi J, Zhang L, Zhou D, Zhang J, Lin Q, Guan W, Zhang J, Ren W, Xu G. Biological Function of Ribosomal Protein L10 on Cell Behavior in Human Epithelial Ovarian Cancer. J Cancer 2018; 9:745-756. [PMID: 29556332 PMCID: PMC5858496 DOI: 10.7150/jca.21614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
Ribosomal protein L10 (RPL10) is one of large ribosomal proteins and plays a role in Wilms' tumor and premature ovarian failure. However, the function of RPL10 in human epithelial ovarian cancer (EOC) remains unknown. The purpose of this study was to examine the expression level and function of RPL10 in EOC. RPL10 protein expression was detected by immunohistochemistry and Western blot. The association RPL10 expression with clinical features was analyzed. Loss-of-function and gain-of-function approaches were applied in cellular assays, including cell viability, migration, invasion, and apoptosis. Our study demonstrated for the first time that RPL10 was upregulated in human EOC compared with normal ovarian tissues. Knockdown of RPL10 inhibited cell viability, migration, and invasion, and increased cell apoptosis. On the contrary, upregulation of RPL10 increased cell viability, migration, invasion, and decreased cell apoptosis. Furthermore, miR-143-3p regulated RPL10 expression. Our data indicate that RPL10 is a potential tissue biomarker of patients with EOC and may be a therapeutic target of ovarian cancer.
Collapse
Affiliation(s)
- Jimin Shi
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Lingyun Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Daibing Zhou
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jinguo Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qunbo Lin
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wencai Guan
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jihong Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Weimin Ren
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Wei J, Fan S, Liu B, Zhang B, Su J, Yu D. Transcriptome analysis of the immune reaction of the pearl oyster Pinctada fucata to xenograft from Pinctada maxima. FISH & SHELLFISH IMMUNOLOGY 2017; 67:331-345. [PMID: 28606863 DOI: 10.1016/j.fsi.2017.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
The pearl oyster Pinctada maxima exhibits great difficulty to culture pearls through nuclear insertion with an allograft, but it is easy for P. fucata to culture pearls after allografting. If P. fucata could be used as a surrogate mother to culture P. maxima pearls, it would benefit the pearl culture industry of P. maxima. However, this is blocked by the immune rejection of P. fucata against P. maxima mantle grafts. In this study, the immune responses of P. fucata hemocyte to allograft and xenograft were investigated after transplantation by transcriptome analysis. In total, 107.93 Gb clean reads were produced and assembled using the reference genome of P. fucata. Gene Ontology Term enrichment and KEGG enrichment analyses indicated that apoptosis, hippo signaling pathway, oxidation-reduction, MAPK signaling pathway, ribosome, protein processing in endoplasmic reticulum, purine metabolism, NF-kappa B signaling pathway, oxidative phosphorylation, Ras signaling pathway, and ubiquitin mediated proteolysis were involved in response to transplantation. Many genes related to oxidation-reduction reactions, the MAPK signaling pathway, and apoptosis were identified by comparison of the allograft group and the xenograft group at 0 h, 6 h, 12 h, 24 h, 48 h, 72 h, and 96 h post-transplantation. Among them, the expression levels of NADH dehydrogenase, succinate dehydrogenase and other dehydrogenases were increased significantly in the xenograft groups compared with allograft groups at 0 h post transplantation, indicating that a respiratory burst of neutrophils occurred immediately after xenograft transplantation. Additionally, HSP70 was highly expressed from 0 h to 96 h in the xenograft groups, indicating an oyster immune response to the xenograft. The genes enriched in the ribosome and hippo-signaling pathways were also identified, and expression patterns of these DEGs were different as compared between transplantation and control groups. Finally, altered expression levels of 10 randomly selected immune-related DEGs were confirmed by quantitative real-time PCR. These results indicated that oxidation-reduction is likely the key factor responsible for immune rejection to transplantation. The findings should provide some new insight into the molecular mechanism of immune rejection of the host against xenograft, and thus benefit to development of immunosuppressive reagents to facilitate effective xenograft pearling.
Collapse
Affiliation(s)
- Jinfen Wei
- Qinzhou University, Qinzhou 535011, Guangxi, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jiaqi Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Dahui Yu
- Qinzhou University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
4
|
Han F, Xiao S, Zhang Y, Wang Z. Molecular cloning and functional characterization of a QM protein in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2015; 44:187-194. [PMID: 25680268 DOI: 10.1016/j.fsi.2015.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/08/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
Since it was proposed to be a tumor suppressor in 1991, QM protein has attracted intensive and wide attention in plants, animals and fungi research fields. Up to date, however, the function of QM protein in fish immunity remains unknown. In this investigation, a QM gene (named as LycQM gene) was cloned from large yellow croaker (Larimichthys crocea), and LycQM protein was expressed in Escherichia coli and purified. The LycQM gene was ubiquitously transcribed in multi-tissues, including spleen, muscle, heart, liver, intestine, blood and head kidney. By quantitative real-time RT-PCR analysis, we found the highest and the lowest expression level of LycQM gene in head kidney and in heart, respectively. Time course analysis showed that LycQM expression was obviously up-regulated in blood and head kidney after immunization with polyinosinic polycytidynic acid (poly I:C), formalin-inactive Gram-negative bacterium Vibrio parahaemolyticus and bacterial lipopolysaccharides (LPS). Moreover, as demonstrated by RNAi assays, LycQM protein could regulate the activity of phenoloxidase, a key enzyme in the proPO activation system of immunity. These results suggested that LycQM protein might play an important role in the immune response against microorganisms in large yellow croaker.
Collapse
Affiliation(s)
- Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Shijun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Yu Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|