1
|
Yao X, Liang X, Chen Q, Liu Y, Wu C, Wu M, Shui J, Qiao Y, Zhang Y, Geng Y. MePAL6 regulates lignin accumulation to shape cassava resistance against two-spotted spider mite. FRONTIERS IN PLANT SCIENCE 2023; 13:1067695. [PMID: 36684737 PMCID: PMC9853075 DOI: 10.3389/fpls.2022.1067695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The two-spotted spider mite (TSSM) is a devastating pest of cassava production in China. Lignin is considered as an important defensive barrier against pests and diseases, several genes participate in lignin biosynthesis, however, how these genes modulate lignin accumulation in cassava and shape TSSM-resistance is largely unknown. METHODS To fill this knowledge gap, while under TSSM infestation, the cassava lignin biosynthesis related genes were subjected to expression pattern analysis followed by family identification, and genes with significant induction were used for further function exploration. RESULTS Most genes involved in lignin biosynthesis were up-regulated when the mite-resistant cassava cultivars were infested by TSSM, noticeably, the MePAL gene presented the most vigorous induction among these genes. Therefore, we paid more attention to dissect the function of MePAL gene during cassava-TSSM interaction. Gene family identification showed that there are 6 MePAL members identified in cassava genome, further phylogenetic analysis, gene duplication, cis-elements and conserved motif prediction speculated that these genes may probably contribute to biotic stress responses in cassava. The transcription profile of the 6 MePAL genes in TSSM-resistant cassava cultivar SC9 indicated a universal up-regulation pattern. To further elucidate the potential correlation between MePAL expression and TSSM-resistance, the most strongly induced gene MePAL6 were silenced using virus-induced gene silencing (VIGS) assay, we found that silencing of MePAL6 in SC9 not only simultaneously suppressed the expression of other lignin biosynthesis genes such as 4-coumarate--CoA ligase (4CL), hydroxycinnamoyltransferase (HCT) and cinnamoyl-CoA reductase (CCR), but also resulted in decrease of lignin content. Ultimately, the suppression of MePAL6 in SC9 can lead to significant deterioration of TSSM-resistance. DISCUSSION This study accurately identified MePAL6 as critical genes in conferring cassava resistance to TSSM, which could be considered as promising marker gene for evaluating cassava resistance to insect pest.
Collapse
Affiliation(s)
- Xiaowen Yao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Xiao Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Qing Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Ying Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Chunling Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Mufeng Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Jun Shui
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yang Qiao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yao Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yue Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| |
Collapse
|
2
|
Structural and functional properties of plant mitochondrial F-ATP synthase. Mitochondrion 2020; 53:178-193. [DOI: 10.1016/j.mito.2020.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
3
|
Kholghi M, Toorchi M, Bandehagh A, Ostendorp A, Ostendorp S, Hanhart P, Kehr J. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:227-236. [PMID: 30611781 DOI: 10.1016/j.bbapap.2018.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/14/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
Abstract
Salinity stress is a major abiotic stress that affects plant growth and limits crop production. Roots are the primary site of salinity perception, and salt sensitivity in roots limits the productivity of the entire plant. To better understand salt stress responses in canola, we performed a comparative proteomic analysis of roots from the salt-tolerant genotype Safi-7 and the salt-sensitive genotype Zafar. Plants were exposed to 0, 150, and 300 mM NaCl. Our physiological and morphological observations confirmed that Safi-7 was more salt-tolerant than Zafar. The root proteins were separated by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry was applied to identify proteins regulated in response to salt stress. We identified 36 and 25 protein spots whose abundance was significantly affected by salt stress in roots of plants from the tolerant and susceptible genotype, respectively. Functional classification analysis revealed that the differentially expressed proteins from the tolerant genotype could be assigned to 14 functional categories, while those from the susceptible genotype could be classified into 9 functional categories. The most significant differences concerned proteins involved in glycolysis (Glyceraldehyde-3-phosphate dehydrogenase, Fructose-bisphosphate aldolase, Phosphoglycerate kinase 3), stress (heat shock proteins), Redox regulation (Glutathione S-transferase DHAR1, L-ascorbate peroxidase), energy metabolism (ATP synthase subunit B), and transport (V-type proton ATPase subunit B1) which were increased only in the tolerant line under salt stress. Our results provide the basis for further elucidating the molecular mechanisms of salt-tolerance and will be helpful for breeding salt-tolerant canola cultivars.
Collapse
Affiliation(s)
- Maryam Kholghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mahmoud Toorchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Bandehagh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Anna Ostendorp
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Steffen Ostendorp
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Patrizia Hanhart
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Julia Kehr
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany.
| |
Collapse
|
4
|
Rurek M, Czołpińska M, Pawłowski TA, Staszak AM, Nowak W, Krzesiński W, Spiżewski T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int J Mol Sci 2018; 19:ijms19041130. [PMID: 29642585 PMCID: PMC5979313 DOI: 10.3390/ijms19041130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis) cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly) in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Respiratory (e.g., complex II, IV (CII, CIV) and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g., components of RNA editing machinery) were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots) immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX) regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Magdalena Czołpińska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | | | - Aleksandra Maria Staszak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
- Present address: Department of Plant Physiology, Institute of Biology, Faculty of Biology and Chemistry, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
5
|
In silico search and biological validation of microRNAs related to drought response in peach and almond. Funct Integr Genomics 2016; 17:189-201. [PMID: 27068847 DOI: 10.1007/s10142-016-0488-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Plant responses to drought stress are regulated at the transcriptional and post-transcriptional levels through noncoding endogenous microRNAs. These microRNAs play key roles in gene expression, mainly by down-regulating target mRNAs. In this work, an in silico search and validation for microRNAs related to drought response in peach ('G.H. Hill'), almond ('Sefied') and an interspecific peach-almond hybrid ('GN 15') has been performed. We used qPCR to analyse the gene expression of several miRNAs described as being related to drought response in peach, including miR156, miR159, miR160, miR167, miR171, miR172, miR398, miR403, miR408, miR842 and miR2275 under mild and severe water deficit. These miRNAs were in silico selected on the basis of previous works, their conservation in plants and their drought response. qPCR analysis confirmed the implication of these miRNAs in the dehydration stress response in the three assayed genotypes. Comparison of miRNA expression patterns in the three evaluated genotypes indicated that the hybrid GN 15 showed higher expression levels of specific miRNAs which should be related to the observed drought tolerance. mRNA target transcripts of the miRNAs studied were predicted using the Rose database, which includes transcription factors that regulate plant growth and development. In addition, results showed that the promoter region contains responsive elements to hormone-mediated regulatory elements. Network analysis not only unravelled the interaction between miRNAs and their predicted gene targets but also highlighted the roles of miRNAs in response to drought stress.
Collapse
|
6
|
Grabelnych OI, Borovik OA, Tauson EL, Pobezhimova TP, Katyshev AI, Pavlovskaya NS, Koroleva NA, Lyubushkina IV, Bashmakov VY, Popov VN, Borovskii GB, Voinikov VK. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. BIOCHEMISTRY (MOSCOW) 2015; 79:506-19. [PMID: 25100008 DOI: 10.1134/s0006297914060030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.
Collapse
Affiliation(s)
- O I Grabelnych
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Division of the Russian Academy of Sciences, Irkutsk, 664033, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mostek A, Börner A, Badowiec A, Weidner S. Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. JOURNAL OF PLANT PHYSIOLOGY 2015; 174:166-76. [PMID: 25462980 DOI: 10.1016/j.jplph.2014.08.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/08/2014] [Accepted: 08/17/2014] [Indexed: 05/21/2023]
Abstract
Salinity is one of the most important abiotic stresses causing a significant reduction of crop plants yield. To gain a better understanding of salinity tolerance mechanisms in barley (Hordeum vulgare), we investigated the changes in root proteome of salt-sensitive (DH14) and tolerant (DH187) lines in response to salt-stress. The seeds of both barley lines were germinating in water or in 100mM NaCl for 6 days. The root proteins were separated by two-dimensional gel electrophoresis. To identify proteins regulated in response to salt stress, MALDI-TOF/TOF mass spectrometry was applied. It was demonstrated that the sensitive and tolerant barley lines respond differently to salt stress. Some of the identified proteins are well-documented as markers of salinity resistance, but several proteins have not been detected in response to salt stress earlier, although they are known to be associated with other abiotic stresses. The most significant differences concerned the proteins that are involved in signal transduction (annexin, translationally-controlled tumor protein homolog, lipoxygenases), detoxification (osmotin, vacuolar ATP-ase), protein folding processes (protein disulfide isomerase) and cell wall metabolism (UDP-glucuronic acid decarboxylase, β-d-glucan exohydrolase, UDP-glucose pyrophosphorylase). The results suggest that the enhanced salinity tolerance of DH187 line results mainly from an increased activity of signal transduction mechanisms eventually leading to the accumulation of stress protective proteins and cell wall structure changes.
Collapse
Affiliation(s)
- Agnieszka Mostek
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland.
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Anna Badowiec
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland
| | - Stanisław Weidner
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland
| |
Collapse
|
8
|
Rurek M, Woyda-Ploszczyca AM, Jarmuszkiewicz W. Biogenesis of mitochondria in cauliflower (Brassica oleracea var. botrytis) curds subjected to temperature stress and recovery involves regulation of the complexome, respiratory chain activity, organellar translation and ultrastructure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:399-417. [PMID: 25617518 DOI: 10.1016/j.bbabio.2015.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/05/2014] [Accepted: 01/16/2015] [Indexed: 12/30/2022]
Abstract
The biogenesis of the cauliflower curd mitochondrial proteome was investigated under cold, heat and the recovery. For the first time, two dimensional fluorescence difference gel electrophoresis was used to study the plant mitochondrial complexome in heat and heat recovery. Particularly, changes in the complex I and complex III subunits and import proteins, and the partial disintegration of matrix complexes were observed. The presence of unassembled subunits of ATP synthase was accompanied by impairment in mitochondrial translation of its subunit. In cold and heat, the transcription profiles of mitochondrial genes were uncorrelated. The in-gel activities of respiratory complexes were particularly affected after stress recovery. Despite a general stability of respiratory chain complexes in heat, functional studies showed that their activity and the ATP synthesis yield were affected. Contrary to cold stress, heat stress resulted in a reduced efficiency of oxidative phosphorylation likely due to changes in alternative oxidase (AOX) activity. Stress and stress recovery differently modulated the protein level and activity of AOX. Heat stress induced an increase in AOX activity and protein level, and AOX1a and AOX1d transcript level, while heat recovery reversed the AOX protein and activity changes. Conversely, cold stress led to a decrease in AOX activity (and protein level), which was reversed after cold recovery. Thus, cauliflower AOX is only induced by heat stress. In heat, contrary to the AOX activity, the activity of rotenone-insensitive internal NADH dehydrogenase was diminished. The relevance of various steps of plant mitochondrial biogenesis to temperature stress response and recovery is discussed.
Collapse
Affiliation(s)
- Michal Rurek
- Department of Cellular and Molecular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Andrzej M Woyda-Ploszczyca
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
9
|
Liang C, Zhang Y, Cheng S, Osorio S, Sun Y, Fernie AR, Cheung CYM, Lim BL. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:922. [PMID: 26579168 PMCID: PMC4623399 DOI: 10.3389/fpls.2015.00922] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 05/19/2023]
Abstract
Chloroplasts and mitochondria are the major ATP producing organelles in plant leaves. Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is a phosphatase dually targeted to the outer membranes of both organelles and it plays a role in the import of selected nuclear-encoded proteins into these two organelles. Overexpression (OE) of AtPAP2 in A. thaliana accelerates plant growth and promotes flowering, seed yield, and biomass at maturity. Measurement of ADP/ATP/NADP(+)/NADPH contents in the leaves of 20-day-old OE and wild-type (WT) lines at the end of night and at 1 and 8 h following illumination in a 16/8 h photoperiod revealed that the ATP levels and ATP/NADPH ratios were significantly increased in the OE line at all three time points. The AtPAP2 OE line is therefore a good model to investigate the impact of high energy on the global molecular status of Arabidopsis. In this study, transcriptome, proteome, and metabolome profiles of the high ATP transgenic line were examined and compared with those of WT plants. A comparison of OE and WT at the end of the night provide valuable information on the impact of higher ATP output from mitochondria on plant physiology, as mitochondrial respiration is the major source of ATP in the dark in leaves. Similarly, comparison of OE and WT following illumination will provide information on the impact of higher energy output from chloroplasts on plant physiology. OE of AtPAP2 was found to significantly affect the transcript and protein abundances of genes encoded by the two organellar genomes. For example, the protein abundances of many ribosomal proteins encoded by the chloroplast genome were higher in the AtPAP2 OE line under both light and dark conditions, while the protein abundances of multiple components of the photosynthetic complexes were lower. RNA-seq data also showed that the transcription of the mitochondrial genome is greatly affected by the availability of energy. These data reflect that the transcription and translation of organellar genomes are tightly coupled with the energy status. This study thus provides comprehensive information on the impact of high ATP level on plant physiology, from organellar biology to primary and secondary metabolism.
Collapse
Affiliation(s)
- Chao Liang
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Shifeng Cheng
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Yuzhe Sun
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | | | - C. Y. M. Cheung
- Department of Chemical and Biomolecular Engineering, National University of SingaporeSingapore, Singapore
| | - Boon L. Lim
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong KongShatin, Hong Kong
- *Correspondence: Boon L. Lim,
| |
Collapse
|
10
|
Moghadam AA, Ebrahimie E, Taghavi SM, Niazi A, Babgohari MZ, Deihimi T, Djavaheri M, Ramezani A. How the nucleus and mitochondria communicate in energy production during stress: nuclear MtATP6, an early-stress responsive gene, regulates the mitochondrial F₁F₀-ATP synthase complex. Mol Biotechnol 2013. [PMID: 23208548 DOI: 10.1007/s12033-012-9624-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.
Collapse
Affiliation(s)
- Ali Asghar Moghadam
- Biotechnology Institute, Shiraz University, Bajgah, 71441-65186 Shiraz, Iran.
| | | | | | | | | | | | | | | |
Collapse
|