1
|
Ding T, Liu H, Yu G. Novel MSX1 Gene Variants in Chinese Children with Non-Syndromic Tooth Agenesis: A Clinical and Genetic Analysis. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1418. [PMID: 39767847 PMCID: PMC11674387 DOI: 10.3390/children11121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Tooth agenesis is the most frequently occurring genetic developmental anomaly in clinical dentistry. The MSX1 gene, essential for tooth development, has been associated with non-syndromic tooth agenesis. This study aims to identify novel MSX1 variants associated with this condition and to understand their impact on tooth development. METHODS This study involved the genetic analysis of two children presenting with non-syndromic tooth agenesis. Conservation analysis and 3D structural modeling were conducted to assess the pathogenicity of these variants. Additionally, a review of 108 patients with known MSX1 variants was performed to identify patterns of tooth agenesis. RESULTS We discovered two novel MSX1 variants, c.823 T>G and c.890 A>G, located in the second exon of the MSX1 gene. The identified MSX1 variants, c.823 T>G and c.890 A>G, were predicted to be pathogenic. Conservation analysis showed that the impacted amino acids are highly conserved across species, and 3D structural analysis indicated potential disruptions to protein function. Among the 108 patients reviewed, a consistent pattern of tooth agenesis was observed, with the most frequently missing teeth being the maxillary second premolars, the mandibular second premolars, and the maxillary first premolars. CONCLUSIONS This research broadens the known range of MSX1 gene variants and deepens our comprehension of the genetic foundations of non-syndromic tooth agenesis. The findings provide valuable insights for genetic counseling and future research into tooth development, emphasizing the importance of MSX1 in dental anomalies.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Central Laboratory, Beijing 100081, China;
| | - Guoxia Yu
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| |
Collapse
|
2
|
Wu Y, Sun J, Zhang C, Ma S, Liu Y, Wu X, Gao Q. The oligodontia phenotype in a X-linked hypohidrotic ectodermal dysplasia patient with a novel EVC2 variant. Heliyon 2024; 10:e23056. [PMID: 38163170 PMCID: PMC10756976 DOI: 10.1016/j.heliyon.2023.e23056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives To analyse the pathogenic genes in a patient with hypohidrotic ectodermal dysplasia (HED) and explore the relationship between pathogenic genes and the oligodontia phenotype. Methods Clinical data and peripheral blood were collected from a patient with HED. Pathogenic genes were analysed by whole-exon sequencing (WES) and verified by Singer sequencing. The secondary and tertiary structures of the variant proteins were predicted to analyse their toxicity. Results The patient exhibited a severe oligodontia phenotype, wherein only two deciduous canines were left in the upper jaw. WES revealed a hemizygous EDA variant c.466C > T p.(Arg156Cys) and a novel heterozygous EVC2 variant c.1772T > C p.(Leu591Ser). Prediction of the secondary and tertiary structures of the EDA variant p.(Arg156Cys) and EVC2 variant p.(Leu591Ser) indicated impaired function of both molecules. Conclusion The patient demonstrated a more severe oligodontia phenotype when compared with the other patients caused by the EDA variant c.466C > T. Since Evc2 is a positive regulator of the Sonic Hedgehog (Shh) signal pathway, we speculated that the EVC2 variant p.(Leu591Ser) may play a synergistic role in the oligodontia phenotype of HED, thereby exacerbating the oligodontia phenotype. Knowledge of oligodontia caused by multiple gene variants is of great significance for understanding individual differences in oligodontia phenotypes.
Collapse
Affiliation(s)
- Yi Wu
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Jing Sun
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Caiqi Zhang
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Siyuan Ma
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Yiting Liu
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Xiaoshan Wu
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qingping Gao
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Zhao Y, Ren J, Meng L, Hou Y, Liu C, Zhang G, Shen W. Characterization of novel MSX1 variants causally associated with non-syndromic oligodontia in Chinese families. Mol Genet Genomic Med 2024; 12:e2334. [PMID: 38069551 PMCID: PMC10767605 DOI: 10.1002/mgg3.2334] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/03/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND MSX1 (OMIM #142983) is crucial to normal dental development, and variants in MSX1 are associated with dental anomalies. The objective of this study was to characterize the pathogenicity of novel MSX1 variants in Chinese families with non-syndromic oligodontia (NSO). METHODS Genomic DNA was extracted from individuals representing 35 families with non-syndromic oligodontia and was analyzed by Sanger sequencing and whole-exome sequencing. Pathogenic variants were screened via analyses involving PolyPhen-2, Sorting-Intolerant from Tolerant, and MutationTaster, and conservative analysis of variants. Patterns of MSX1-related NSO were analyzed. MSX1 structural changes suggested functional consequences in vitro. RESULTS Three previously unreported MSX1 heterozygous variants were identified: one insertion variant (c.576_577insTAG; p.Gln193*) and two missense variants (c. 871T>C; p.Tyr291His and c. 644A>C; p.Gln215Pro). Immunofluorescence analysis revealed abnormal subcellular localization of the p.Gln193* MSX1 variant. In addition, we found that these MSX1 variants likely lead to the loss of second premolars. CONCLUSION Three novel MSX1 variants were identified in Chinese Han families with NSO, expanding the MSX1 variant spectrum and presenting a genetic origin for the pathogenesis detected in patients and their families.
Collapse
Affiliation(s)
- Ya Zhao
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Jiabao Ren
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Lingqiang Meng
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Yan Hou
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Chunyan Liu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| | - Guozhong Zhang
- College of Forensic MedicineHebei Medical UniversityShijiazhuangPR China
| | - Wenjing Shen
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of StomatologyHebei Medical UniversityShijiazhuangPR China
| |
Collapse
|
4
|
Developmental Defects of the Teeth and Their Hard Tissues. Pediatr Dent 2022. [DOI: 10.1007/978-3-030-78003-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Novel MSX1 variants identified in families with nonsyndromic oligodontia. Int J Oral Sci 2021; 13:2. [PMID: 33419968 PMCID: PMC7794556 DOI: 10.1038/s41368-020-00106-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/08/2022] Open
Abstract
The goal of this study was to identify MSX1 gene variants in multiple Chinese families with nonsyndromic oligodontia and analyse the functional influence of these variants. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify the causal gene variants in five families with nonsyndromic oligodontia, and a series of bioinformatics databases were used for variant confirmation and functional prediction. Phenotypic characterization of the members of these families was described, and an in vitro analysis was performed for functional evaluation. Five novel MSX1 heterozygous variants were identified: three missense variants [c.662A>C (p.Q221P), c.670C>T (p.R224C), and c.809C>T (p.S270L)], one nonsense variant [c.364G>T (p.G122*)], and one frameshift variant [c.277delG (p.A93Rfs*67)]. Preliminary in vitro studies demonstrated that the subcellular localization of MSX1 was abnormal with the p.Q221P, p.R224C, p.G122*, and p.A93Rfs*67 variants compared to the wild type. Three variants (p.Q221P, p.G122*, and p.A93Rfs*67) were classified as pathogenic or likely pathogenic, while p.S270L and p.R224C were of uncertain significance in the current data. Moreover, we summarized and analysed the MSX1-related tooth agenesis positions and found that the type and variant locus were not related to the severity of tooth loss. Our results expand the variant spectrum of nonsyndromic oligodontia and provide valuable information for genetic counselling.
Collapse
|
6
|
Grejtakova D, Gabrikova-Dojcakova D, Boronova I, Kyjovska L, Hubcejova J, Fecenkova M, Zigova M, Priganc M, Bernasovska J. WNT10A variants in relation to nonsyndromic hypodontia in eastern Slovak population. J Genet 2018; 97:1169-1177. [PMID: 30555066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nonsyndromic hypodontia is a congenital absence of less than six permanent teeth, with a most common subtype maxillary lateral incisor agenesis (MLIA). Mutations in several genes have been described in severe tooth agenesis. The aim of this study was to search for the variants in wingless-type MMTV-integration site family member (WNT10A), paired box 9 (PAX9) and axis inhibitor 2 (AXIN2) genes, and investigate their potential role in the pathogenesis of non-syndromic hypodontia. Clinical examination and panoramic radiograph were performed in the cohort of 60 unrelated Slovak patients of Caucasian origin with nonsyndromic hypodontia including 37 MLIA cases and 48 healthy controls. Genomic DNA was isolated from buccal swabs and Sanger sequencing of WNT10A, PAX9 and AXIN2 was performed. Altogether, we identified 23 single-nucleotide variants, of which five were novel. We have found three rare nonsynonymous variants in WNT10A (p.Gly165Arg; p.Gly213Ser and p.Phe228Ile) in eight (13.33%) of 60 patients. Analysis showed potentially damaged WNT10A variant p.Phe228Ile predominantly occurred only in MLIA patients, and with a dominant form of tooth agenesis (odds ratio (ORdom) = 9.841; P = 0.045; 95% confidence interval (CI) 0.492-196.701;ORrec = 0.773; P = 1.000; 95% CI 0.015-39.877). In addition, the WNT10A variant p.Phe228Ile showed a trend associated with familial nonsyndromic hypodontia (P = 0.024; OR= 1.20; 95% CI 0.97-1.48). After Bonferroni correction, these effects remained with borderline tendencies. Using a 3D WNT10A protein model, we demonstrated that the variant Phe228Ile changes the proteinsecondary structure. In PAX9 and AXIN2, common variants were detected. Our findings suggest that the identified WNT10A variant p.Phe228Ile could represent risk for the inherited nonsyndromic hypodontia underlying MLIA. However, further study in different populations is required.
Collapse
Affiliation(s)
- D Grejtakova
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Grejtakova D, Gabrikova-Dojcakova D, Boronova I, Kyjovska L, Hubcejova J, Fecenkova M, Zigova M, Priganc M, Bernasovska J. WNT10A variants in relation to nonsyndromic hypodontia in eastern Slovak population. J Genet 2018. [DOI: 10.1007/s12041-018-1011-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Next generation sequencing reveals a novel nonsense mutation in MSX1 gene related to oligodontia. PLoS One 2018; 13:e0202989. [PMID: 30192788 PMCID: PMC6128526 DOI: 10.1371/journal.pone.0202989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Tooth agenesis is one of the most common craniofacial disorders in humans. More than 350 genes have been associated with teeth development. In this study, we enrolled 60 child patients (age 13 to 17) with various types of tooth agenesis. Whole gene sequences of PAX9, MSX1, AXIN2, EDA, EDAR and WNT10a genes were sequenced by next generation sequencing on the Illumina MiSeq platform. We found previously undescribed heterozygous nonsense mutation g.8177G>T (c.610G>T) in MSX1 gene in one child. Mutation was verified by Sanger sequencing. Sequencing analysis was performed in other family members of the affected child. All family members carrying g.8177G>T mutation suffered from oligodontia (missing more than 6 teeth excluding third molars). Mutation g.8177G>T leads to a stop codon (p.E204X) and premature termination of Msx1 protein translation. Based on previous in vitro experiments on mutation disrupting function of Msx1 homeodomain, we assume that the heterozygous g.8177G>T nonsense mutation affects the amount and function of Msx1 protein and leads to tooth agenesis.
Collapse
|
9
|
Wu YC, Su CC, Tsai YWC, Cheng WC, Chung MP, Chiang HS, Hsieh CY, Chung CH, Shieh YS, Huang RY. Complicated Root Canal Configuration of Mandibular First Premolars Is Correlated with the Presence of the Distolingual Root in Mandibular First Molars: A Cone-beam Computed Tomographic Study in Taiwanese Individuals. J Endod 2017; 43:1064-1071. [DOI: 10.1016/j.joen.2017.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 10/19/2022]
|
10
|
Bonczek O, Balcar V, Šerý O. PAX9
gene mutations and tooth agenesis: A review. Clin Genet 2017; 92:467-476. [DOI: 10.1111/cge.12986] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 11/27/2022]
Affiliation(s)
- O. Bonczek
- Laboratory of DNA Diagnostics, Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
- Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics; The Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - V.J. Balcar
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of medical sciences, Sydney Medical School; The University of Sydney; Sydney NSW Australia
| | - O. Šerý
- Laboratory of DNA Diagnostics, Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
- Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics; The Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
11
|
Shahid M, Balto HA, Al-Hammad N, Joshi S, Khalil HS, Somily AM, Sinjilawi NAA, Al-Ghamdi S, Faiyaz-Ul-Haque M, Dhillon VS. Mutations in MSX1, PAX9 and MMP20 genes in Saudi Arabian patients with tooth agenesis. Eur J Med Genet 2016; 59:377-85. [DOI: 10.1016/j.ejmg.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/15/2016] [Accepted: 06/19/2016] [Indexed: 02/07/2023]
|
12
|
Lu Y, Qian Y, Zhang J, Gong M, Wang Y, Gu N, Ma L, Xu M, Ma J, Zhang W, Pan Y, Wang L. Genetic Variants of BMP2 and Their Association with the Risk of Non-Syndromic Tooth Agenesis. PLoS One 2016; 11:e0158273. [PMID: 27362534 PMCID: PMC4928851 DOI: 10.1371/journal.pone.0158273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
Non-syndromic tooth agenesis (or non-syndromic congenitally missing tooth) is one of the most common congenital defects in humans affecting the craniofacial function and appearance. Single nucleotide polymorphisms (SNPs) have been associated with an individual’s susceptibility to these anomalies. The aim of the present study was therefore to investigate the roles of the potentially functional SNPs of BMP2 in the occurrence of tooth agenesis. Overall, four potentially functional SNPs of BMP2 (rs15705, rs235768, rs235769 and rs3178250) were selected, and their associations with the susceptibility of tooth agenesis were evaluated in a case-control study of 335 non-syndromic tooth agenesis cases and 444 healthy controls. The SNPs rs15705 and rs3178250 were found to be associated with an individual’s risk of tooth agenesis (P = 0.046 and P = 0.039, respectively). Both SNPs showed an increased risk of mandibular incisor agenesis (rs15705, AA/AC vs. CC = 1.58, 95% CI = [1.06–2.34], P = 0.024; rs3178250, TT/TC vs. CC = 1.60, 95% CI = [1.08–2.37], P = 0.020). Bioinformatics analysis indicated that these two SNPs located at the 3’-untranslated region (3’-UTR) of BMP2 might alter the binding ability of miR-1273d and miR-4639-5p, respectively, which was confirmed by luciferase activity assays in the 293A and COS7 cell lines (P < 0.001 in 293A and P < 0.01 in COS7 for miR-1273d; and P < 0.001 in both cells for miR-4639-5p). Furthermore, BMP2 mRNA expression decreased after transfecting either miR-1273d or miR-4639-5p into these two cell lines (P < 0.01 in 293A and P < 0.001 in COS7 for miR-1273d, and P < 0.01 in both cell lines for miR-4639-5p). Taken together, our findings indicate that rs15705 and rs317250 are associated with the susceptibility of non-syndromic tooth agenesis by possibly affecting miRNAs and mRNA interaction.
Collapse
Affiliation(s)
- Yun Lu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, College of Stomatology, Dalian Medical University, Dalian, China
| | - Yajing Qian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinglu Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Orofacial Pain and TMD Research Unit, Institute of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Miao Gong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuting Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ning Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Min Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Weibing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- * E-mail: (LW); (YCP)
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- * E-mail: (LW); (YCP)
| |
Collapse
|
13
|
Liu H, Ding T, Zhan Y, Feng H. A Novel AXIN2 Missense Mutation Is Associated with Non-Syndromic Oligodontia. PLoS One 2015; 10:e0138221. [PMID: 26406231 PMCID: PMC4583461 DOI: 10.1371/journal.pone.0138221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
Oligodontia is defined as the congenital absence of six or more permanent teeth, excluding the third molars. Oligodontia may contribute to masticatory dysfunction, speech alteration, aesthetic problems and malocclusion. Numerous gene mutations have been association with oligodontia. In the present study, we identified a de novo AXIN2 missense mutation (c.314T>G) in a Chinese individual with non-syndromic oligodontia. This mutation results in the substitution of Val at residue 105 for Gly (p.Val105Gly); residue 105 is located in the highly conserved regulator of G protein signaling (RGS) domain of the AXIN2 protein. This is the first report indicating that a mutation in the RGS domain of AXIN2 is responsible for non-syndromic oligodontia. Our study supports the relationship between AXIN2 mutation and non-syndromic oligodontia and extends the mutation spectrum of the AXIN2 gene.
Collapse
Affiliation(s)
- Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tingting Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuan Zhan
- The Third Dental Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Origins and evolvability of the PAX family. Semin Cell Dev Biol 2015; 44:64-74. [DOI: 10.1016/j.semcdb.2015.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/07/2015] [Accepted: 08/22/2015] [Indexed: 01/18/2023]
|
15
|
Thimmegowda U, Prasanna P, Athimuthu A, Bhat PK, Puttashamachari Y. A Nonsyndromic Autosomal Dominant Oligodontia with A Novel Mutation of PAX9-A Clinical and Genetic Report. J Clin Diagn Res 2015; 9:ZD08-10. [PMID: 26266225 DOI: 10.7860/jcdr/2015/13173.6049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022]
Abstract
Oligodontia is congenital absence of one or more teeth which has familial abnormality and attributable to various mutations or polymorphisms of genes often associated with malformative syndromes. The present case reports a rare case of non syndromic oligodontia in an 8-year-old girl with missing 14 permanent teeth excluding third molars in mixed dentition. It is a rare finding which has not been frequently documented in Indian children. Mutations in MSX1 and PAX9 have been described in families in which inherited oligodontia characteristically involves permanent incisors, lateral incisors, premolars and molars. Our study analysed one large family with dominantly inherited oligodontia clinically and genetically. This phonotype is distinct from oligodontia phenotypes associated with mutations in PAX9. Sequencing of the PAX9 revealed a novel mutation in the paired domain of the molecule. The multiple sequence alignment and SNP analysis of the PAX9 exon 2 revealed two mutations.
Collapse
Affiliation(s)
- Umapathy Thimmegowda
- Reader, Department of Pedodontics & Preventive Dentistry, Rajarajeswari Dental College and Hospital , #14 Ramohallicross Kumbalgodu, Mysore Road, Bangalore, Karnataka, India
| | - Praveen Prasanna
- Professor, Department of Pedodontics & Preventive Dentistry, DA Pandu Memorial R V Dental College and Hospital , Bangalore, Karnataka, India
| | - Anantharaj Athimuthu
- Professor and Head, Department of Pedodontics & Preventive Dentistry, DA Pandu Memorial R V Dental College and Hospital , Bangalore, Karnataka, India
| | - Prasanna Kumar Bhat
- Senior Lecturer, Department of Pedodontics & Preventive Dentistry, Rajarajeswari Dental College and Hospital , #14 Ramohallicross Kumbalgodu, Mysore Road, Bangalore, Karnataka, India
| | - Yogish Puttashamachari
- Senior Lecturer, Department of Oral Pathology & Microbiology, Sharavathi Dental College and Hospital , Shimoga, Karnataka, India
| |
Collapse
|
16
|
Clinical and genetic analysis of a nonsyndromic oligodontia in a child. Case Rep Dent 2014; 2014:137621. [PMID: 25215247 PMCID: PMC4158267 DOI: 10.1155/2014/137621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 01/09/2023] Open
Abstract
The etiology of tooth agenesis may be related to several factors, among them, the genetic alterations that play a fundamental role in the development of this dental anomaly, so that knowledge about it helps the clinician to have a greater understanding of their patients. Thus, the aim of this study was to report the case of a nonsyndromic child, with tooth agenesis of one premolar, three first permanent molars, and all second permanent molars. In addition, a genetic research between polymorphic variants in genes MMP3 and BMP2 was performed in order to observe the association between changes in these genes and congenital tooth absences. For this purpose, DNA from child was extracted and polymorphisms were investigated. It was clinically and radiographically observed that this was a case of oligodontia, in which the authors suggested an association between the polymorphisms found and tooth agenesis diagnosed in that child.
Collapse
|