1
|
Zhu J, Nan Q, Qin T, Qian D, Mao T, Yuan S, Wu X, Niu Y, Bai Q, An L, Xiang Y. Higher-Ordered Actin Structures Remodeled by Arabidopsis ACTIN-DEPOLYMERIZING FACTOR5 Are Important for Pollen Germination and Pollen Tube Growth. MOLECULAR PLANT 2017; 10:1065-1081. [PMID: 28606871 DOI: 10.1016/j.molp.2017.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Dynamics of the actin cytoskeleton are essential for pollen germination and pollen tube growth. ACTIN-DEPOLYMERIZING FACTORs (ADFs) typically contribute to actin turnover by severing/depolymerizing actin filaments. Recently, we demonstrated that Arabidopsis subclass III ADFs (ADF5 and ADF9) evolved F-actin-bundling function from conserved F-actin-depolymerizing function. However, little is known about the physiological function, the evolutional significance, and the actin-bundling mechanism of these neofunctionalized ADFs. Here, we report that loss of ADF5 function caused delayed pollen germination, retarded pollen tube growth, and increased sensitive to latrunculin B (LatB) treatment by affecting the generation and maintenance of actin bundles. Examination of actin filament dynamics in living cells revealed that the bundling frequency was significantly decreased in adf5 pollen tubes, consistent with its biochemical functions. Further biochemical and genetic complementation analyses demonstrated that both the N- and C-terminal actin-binding domains of ADF5 are required for its physiological and biochemical functions. Interestingly, while both are atypical actin-bundling ADFs, ADF5, but not ADF9, plays an important role in mature pollen physiological activities. Taken together, our results suggest that ADF5 has evolved the function of bundling actin filaments and plays an important role in the formation, organization, and maintenance of actin bundles during pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Jingen Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Qin
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shunjie Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaorong Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qifeng Bai
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Zhang L, Qi W, Xu H, Wang L, Jiao Z. Effects of low-energy N(+)-beam implantation on root growth in Arabidopsis seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:111-119. [PMID: 26479682 DOI: 10.1016/j.ecoenv.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 05/24/2023]
Abstract
The effects of ion implantation on the morphology changes and biological responses of plants are dependent on implantation doses. Previous studies mainly focus on the application of ion-beam technology in genetic mutation. Our knowledge regarding the mechanism underlying the plant growth inhibition induced by ion implantation remains limited. In this study, we explore the responses of root growth to low-energy N(+)-beam implantation using implanted Arabidopsis seeds. Our results showed that the root and root tip length were obviously reduced by implantation with large doses of low-energy N(+) beam. The analysis of confocal images showed that ion implantation reduced the cell viability and cell division activity in root meristem. The production rate of superoxide radical (O2(•-)) and contents of hydrogen peroxide (H2O2) in roots under ion implantation were markedly higher than those of controls. Transcriptional expression analysis of selected genes revealed that Arabidopsis RBOH genes associated with reactive oxygen species (ROS) production were significantly up-regulated in roots in response to ion implantation. The activities of antioxidant enzymes were also induced by ion implantation. Moreover, ROS scavenging obviously enhanced cell viability and cell division in response to ion implantation and alleviated the root growth inhibition of the implanted seedlings. Our results suggest that the overproduction of ROS induced by ion implantation is involved in the inhibitory effect of low-energy ion beam on root growth by affecting the cell viability and cell division of root meristem in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Wencai Qi
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Hangbo Xu
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Lin Wang
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Zhen Jiao
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|