1
|
Karti O, Saatci AO. Fenofibrate and diabetic retinopathy. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2024; 13:35-43. [PMID: 38978827 PMCID: PMC11227662 DOI: 10.51329/mehdiophthal1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/25/2024] [Indexed: 07/10/2024]
Abstract
Background Diabetic retinopathy (DR), a sight-threatening ocular complication of diabetes mellitus, is one of the main causes of blindness in the working-age population. Dyslipidemia is a potential risk factor for the development or worsening of DR, with conflicting evidence in epidemiological studies. Fenofibrate, an antihyperlipidemic agent, has lipid-modifying and pleiotropic (non-lipid) effects that may lessen the incidence of microvascular events. Methods Relevant studies were identified through a PubMed/MEDLINE search spanning the last 20 years, using the broad term "diabetic retinopathy" and specific terms "fenofibrate" and "dyslipidemia". References cited in these studies were further examined to compile this mini-review. These pivotal investigations underwent meticulous scrutiny and synthesis, focusing on methodological approaches and clinical outcomes. Furthermore, we provided the main findings of the seminal studies in a table to enhance comprehension and comparison. Results Growing evidence indicates that fenofibrate treatment slows DR advancement owing to its possible protective effects on the blood-retinal barrier. The protective attributes of fenofibrate against DR progression and development can be broadly classified into two categories: lipid-modifying effects and non-lipid-related (pleiotropic) effects. The lipid-modifying effect is mediated through peroxisome proliferator-activated receptor-α activation, while the pleiotropic effects involve the reduction in serum levels of C-reactive protein, fibrinogen, and pro-inflammatory markers, and improvement in flow-mediated dilatation. In patients with DR, the lipid-modifying effects of fenofibrate primarily involve a reduction in lipoprotein-associated phospholipase A2 levels and the upregulation of apolipoprotein A1 levels. These changes contribute to the anti-inflammatory and anti-angiogenic effects of fenofibrate. Fenofibrate elicits a diverse array of pleiotropic effects, including anti-apoptotic, antioxidant, anti-inflammatory, and anti-angiogenic properties, along with the indirect consequences of these effects. Two randomized controlled trials-the Fenofibrate Intervention and Event Lowering in Diabetes and Action to Control Cardiovascular Risk in Diabetes studies-noted that fenofibrate treatment protected against DR progression, independent of serum lipid levels. Conclusions Fenofibrate, an oral antihyperlipidemic agent that is effective in decreasing DR progression, may reduce the number of patients who develop vision-threatening complications and require invasive treatment. Despite its proven protection against DR progression, fenofibrate treatment has not yet gained wide clinical acceptance in DR management. Ongoing and future clinical trials may clarify the role of fenofibrate treatment in DR management.
Collapse
Affiliation(s)
- Omer Karti
- Department of Ophthalmology, Izmir Dokuz Eylul University, Izmir, Turkiye
| | - Ali Osman Saatci
- Department of Ophthalmology, Izmir Dokuz Eylul University, Izmir, Turkiye
| |
Collapse
|
2
|
Jeong H, Maatouk CM, Russell MW, Singh RP. Associations between lipid abnormalities and diabetic retinopathy across a large United States national database. Eye (Lond) 2024; 38:1870-1875. [PMID: 38521836 PMCID: PMC11226450 DOI: 10.1038/s41433-024-03022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND/OBJECTIVES While dyslipidaemia has been suggested as a potential risk factor for diabetic retinopathy (DR), previous studies have reported conflicting findings. This study aimed to better characterize the relationship between abnormal serum levels of various lipid markers and the risk of the development and progression of DR. SUBJECTS/METHODS This retrospective cohort study utilized a United States national database of electronic medical records. Adults with a history of type 2 diabetes mellitus without type 1 diabetes mellitus were divided into cohorts based on the presence of abnormal serum levels of various lipid markers. Propensity score matching was performed to match cohorts with abnormal lipid levels to those with normal lipid levels on covariates. The cohorts were then compared to evaluate the hazard ratios (HR) of receiving a new DR diagnosis, pars plana vitrectomy, panretinal photocoagulation, vitreous haemorrhage, proliferative diabetic retinopathy, diabetic macular oedema (DMO), and traction retinal detachment. RESULTS The database contained 1,126,231 eligible patients (mean age: 60.8 [14.2] years; 46.0% female). Among patients without prior DR, low HDL (HR = 0.94, CI = 0.90-0.98), total cholesterol (HR = 0.88, CI = 0.85-0.91), and high triglyceride (HR = 0.91, CI = 0.86-0.97) levels were associated with a decreased risk of receiving a DR diagnosis. Among patients with preexisting DR, high LDL levels was associated with an increased risk of DMO (HR = 1.42, CI = 1.15-1.75), whereas low HDL levels was associated with a marginally decreased risk (HR = 0.92, CI = 0.85-0.99). CONCLUSIONS Elevated levels of markers of dyslipidaemia are inversely associated with the risk of receiving a DR diagnosis, but this relationship is blunted after the onset of DR.
Collapse
Affiliation(s)
- Hejin Jeong
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher M Maatouk
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Martin Health, Cleveland Clinic Florida, Stuart, FL, USA.
| |
Collapse
|
3
|
Farajipour H, Matin HR, Asemi Z, Sadr S, Tajabadi-Ebrahimi M, Sharifi N, Banikazemi Z, Taghizadeh M, Mirzaei H. The effects of probiotics supplements on metabolic indices and clinical signs in patients with diabetic retinopathy, a randomized double blind clinical trial. J Diabetes Metab Disord 2024; 23:1133-1140. [PMID: 38932908 PMCID: PMC11196520 DOI: 10.1007/s40200-024-01399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose This study was carried out to evaluate the effects of probiotics administration on clinical status and metabolic profiles in diabetic retinopathy (DR) patients. Methods This randomized, double-blind, placebo-controlled trial was conducted among 72 DR patients. Subjects received probiotics including Lactobacillus acidophilus, Bifidobacterium bifidum, Bifidobacterium langum, Bifidobacterium lactis daily (2 × 109 CFU/each strain) (n = 36) or placebo (starch) (n = 36) and were instructed to take one capsule daily for 12 weeks. Finally, 55 participants [probiotic group (n = 30) and placebo group (n = 25)] completed the study. Fasting blood samples were obtained at baseline and after the 12-week intervention to determine metabolic profiles. To determine the effects of probiotic supplementation on clinical symptoms and biochemical variables, we used one-way repeated measures analysis of variance. Results After the 12-week intervention, compared with the placebo, probiotic supplementation significantly decreased means serum insulin concentrations (Probiotic group: -4.9 ± 6.5vs. Placebo group: 3.0 ± 7.7 µIU/mL, Ptime×group<0.001), homeostatic model assessment for insulin resistance (Probiotic group: -2.5 ± 3.8 vs. Placebo group: 1.1 ± 2.7, Ptime×group<0.001) and hemoglobin A1c (HbA1C) (Probiotic group: -0.4 ± 0.7 vs. Placebo group: -0.02 ± 0.2%, Ptime×group=0.01), and significantly increased the quantitative insulin sensitivity check index (QUICKI) (Probiotic group: 0.02 ± 0.03 vs. Placebo group: -0.03 ± 0.04, Ptime×group<0.001). There was no significant effect of probiotic administration on other metabolic profiles and clinical symptoms. Conclusions Overall, probiotic supplementation after 12 weeks in DR patients had beneficial effects on few metabolic profiles. This study was registered under the Iranian website for clinical trials as http://www.irct.ir: IRCT20130211012438N29.
Collapse
Affiliation(s)
- Hasan Farajipour
- Department of Ophthalmology, School of Medicine, Matini Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Matin
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Faculty member of Science Department, Science Faculty, Islamic Azad University, Tehran Central branch, Tehran, Iran
| | - Saeed Sadr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Tajabadi-Ebrahimi
- Faculty member of Science Department, Science Faculty, Islamic Azad University, Tehran Central branch, Tehran, Iran
| | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Chadalavada SH, Shaia JK, Russell MW, Talcott KE, Singh RP. Impact of Dyslipidemia Medications on the Prevalence of Diabetic Retinopathy Among a Large US Cohort. Ophthalmic Surg Lasers Imaging Retina 2023; 54:626-633. [PMID: 37956319 DOI: 10.3928/23258160-20231017-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Dyslipidemia medications such as statins and fibrates may be associated with a reduction in diabetic retinopathy (DR) progression, but real-world data is lacking. This study evaluates cholesterol-lowering medications and their association with the prevalence of DR and advanced DR complications. PATIENTS AND METHODS Data was collected using codes from the International Classification of Diseases on TriNetX, a cross-sectional database of over 79 million Americans, between June and August 2022. Prevalence and prevalence odds ratios (POR) were calculated. RESULTS Patients taking pitavastatin (OR 0.64, 95% CI 0.49, 0.84), fenofibrate (OR 0.83, CI 0.79, 0.87), or evolocumab (OR 0.80, CI 0.68, 0.95) had lower POR of proliferative DR compared to nonproliferative DR. Patients taking any cholesterol medication had a lower POR of vitreous hemorrhage. Patients taking fibrates also had lower POR of neovascular glaucoma. CONCLUSION This exploratory study highlights positive associations between DR and dyslipidemia and medications that may have fewer worsening events in DR patients. [Ophthalmic Surg Lasers Imaging Retina 2023;54:626-633.].
Collapse
|
5
|
Pereira-da-Mota AF, Vivero-Lopez M, Serramito M, Diaz-Gomez L, Serro AP, Carracedo G, Huete-Toral F, Concheiro A, Alvarez-Lorenzo C. Contact lenses for pravastatin delivery to eye segments: Design and in vitro-in vivo correlations. J Control Release 2022; 348:431-443. [PMID: 35688348 DOI: 10.1016/j.jconrel.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Oral administration of cholesterol-lowering statins, HMG-CoA reductase inhibitors, is associated with beneficial effects on eye conditions. This work aims to design contact lenses (CLs) that can sustainedly deliver pravastatin and thus improve the ocular efficacy while avoiding systemic side effects of statins. Bioinspired hydrogels were prepared with monomers that resemble hydrophobic (ethylene glycol phenyl ether methacrylate) and amino (2-aminoethyl methacrylamide hydrochloride) functionalities of the active site of HMG-CoA. Best performing CLs loaded >6 mg/g, in vitro fulfilled the release demands for daily wearing, and showed anti-inflammatory activity (lowering TNF-α). High hydrostatic pressure sterilization preserved the stability of both the drug and the hydrogel network. Ex vivo tests revealed the ability of pravastatin to accumulate in cornea and sclera and to penetrate through transscleral route. In vivo tests (rabbits) confirmed that, compared to eye drops and for the same dose, CLs provided significantly higher pravastatin levels in tear fluid within 1 to 7 h of wearing. Moreover, after 8 h wearing pravastatin was present in cornea, sclera, aqueous humour and vitreous humour. Strong correlations between percentages of drug released in vitro and in vivo were found. Effects of volume and proteins on release rate and Levy plots were identified.
Collapse
Affiliation(s)
- Ana F Pereira-da-Mota
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Serramito
- Ocupharm Research Group, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Paula Serro
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Gonzalo Carracedo
- Ocupharm Research Group, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain
| | - Fernando Huete-Toral
- Ocupharm Research Group, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Cui KM, Hu ZP, Wang YL. MG53 represses high glucose-induced inflammation and angiogenesis in human retinal endothelial cells by repressing the EGR1/STAT3 axis. Immunopharmacol Immunotoxicol 2022; 44:484-491. [PMID: 35438597 DOI: 10.1080/08923973.2022.2054426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a vascular complication of diabetes mellitus that leads to visual injury and blindness. Both angiogenesis and inflammation play an important role in the pathogenesis of DR. Here we aimed to explore the mechanisms of mitsugumin 53 (MG53) in ameliorating the dysfunction induced by high glucose (HG) in humans retinal microvascular endothelial cells (HRECs). METHODS HRECs were subjected to HG in the presence or absence of MG53 overexpression. The effect of MG53 on cell viability and inflammatory response in HG-treated HRECs was measured using the Cell Counting Kit-8 and ELISAs, respectively. Expression of MG53, EGR1, p-STAT3, FGF2, TGFB1, and Angiopoietin-1 in HG-treated HRECs was quantified by western blot or quantitative real-time polymerase chain reaction. RESULTS HG significantly downregulated MG53 in HRECs, which reduced cell viability while inducing angiogenesis and inflammatory response. Upregulation of MG53 reversed these effects of HG. MG53 directly interacted with EGR1 and repressed its expression, which decreased phosphorylation of STAT3 and downregulated FGF2, TGFB1, and Angiopoietin-1. EGR1 up-regulation or STAT3 activation antagonized the protective effects of MG53. CONCLUSION MG53 alleviates HG-induced dysfunction in HRECs by repressing EGR1/STAT3 signaling. Thereby MG53 may have therapeutic potential in DR.
Collapse
Affiliation(s)
- Kun-Ming Cui
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Zhen-Ping Hu
- Department of Endocrinology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Ya-Li Wang
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
7
|
Meer E, Bavinger JC, Yu Y, Hua P, McGeehan B, VanderBeek BL. Statin Use and the Risk of Progression to Vision Threatening Diabetic Retinopathy. Pharmacoepidemiol Drug Saf 2022; 31:652-660. [PMID: 35253307 DOI: 10.1002/pds.5426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE This study aims to assess the effect of statins on progression from nonproliferative diabetic retinopathy (NPDR) to vision-threatening diabetic retinopathy (VTDR), proliferative diabetic retinopathy (PDR) or diabetic macular edema (DME). METHODS Two cohort studies using a U.S. medical claims database from 2002 to 2019 including NPDR patients 18 years or older. A risk factor analysis performed a time-updating cox regression model assessing statin usage. A second new-user active comparator design analysis replicating a previously published study. Main outcomes included a new diagnosis of VTDR (composite of either PDR or DME) or DME and PDR individually for the risk factor study and included additional outcomes of new DR, NPDR, vitreous hemorrhage (VH) and tractional retinal detachment (TRD) for the new user study. RESULTS Risk factor analysis included 66 617 statin users with NPDR at baseline and 83 365 nonstatin users. Of these, 27 325 (18.2%) progressed to VTDR, 4086 (2.71%) progressed to PDR, and 22 750 (15.1%) progressed to DME. After multivariable analysis, no protective effect of statin use was found for progression to VTDR, PDR, or DME (HR = 1.01-3, p >0.33 for all comparisons). Replicated new user design analysis also showed no protective effect for statins on risk of development of DR (HR = 1.03, 95% CI: 0.99-1.07, p = 0.13), PDR (HR = 0.89, 95% CI: 0.79-1.02, p = 0.09), DME (HR = 0.94, 95% CI: 0.86-1.03, p = 0.21), VH (HR = 1.00, 95% CI: 0.86-1.16, p = 0.99), and TRD (HR = 1.11, 95% CI: 0.89-1.38, p = 0.36). CONCLUSION Statin use was found not to be protective for progression of DR regardless of study methodology. These results suggest that the specifics of the population studied rather than differing study methodology are important in assessing the effect of statins on DR progression.
Collapse
Affiliation(s)
- Elana Meer
- Scheie Eye Institute, Department of Ophthalmology Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - J. Clay Bavinger
- Scheie Eye Institute, Department of Ophthalmology Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Yinxi Yu
- Center for Preventive Ophthalmology and Biostatistics Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Peiying Hua
- Center for Preventive Ophthalmology and Biostatistics Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Brendan McGeehan
- Center for Preventive Ophthalmology and Biostatistics Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Brian L. VanderBeek
- Scheie Eye Institute, Department of Ophthalmology Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics & Epidemiology Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
- Leonard Davis Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
8
|
Pranata R, Vania R, Victor AA. Statin reduces the incidence of diabetic retinopathy and its need for intervention: A systematic review and meta-analysis. Eur J Ophthalmol 2021; 31:1216-1224. [PMID: 32530705 DOI: 10.1177/1120672120922444] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
PURPOSE We aimed to perform a systematic literature search on the latest evidence of the role of statin in reducing diabetic retinopathy and its need for intervention. METHODS A comprehensive search on cohort studies/clinical trials that assess statins and diabetic retinopathy up until August 2019 was performed. The outcome measured was the incidence of diabetic retinopathy and its need for intervention. RESULTS There were 558.177 patients from six studies. Statin was associated with a lower incidence of diabetic retinopathy (hazard ratio: 0.68 (0.55, 0.84), p < 0.001; I2: 95%). For the subtypes of diabetic retinopathy, statin lowers the incidence of proliferative diabetic retinopathy (hazard ratio: 0.69 (0.51, 0.93), p = 0.01; I2: 90%), non-proliferative diabetic retinopathy (hazard ratio: 0.80 (0.66, 0.96), p = 0.02; I2: 93%), and diabetic macular edema (hazard ratio: 0.56 (0.39, 0.80), p = 0.002; I2: 82%). Statin was associated with a reduced need for retinal laser treatment with a hazard ratio of 0.70 (0.64, 0.76) (p < 0.001; I2: 0%), intravitreal injection with a hazard ratio of 0.82 (0.79, 0.85) (p < 0.001; I2: 0%), and vitrectomy with a hazard ratio of 0.64 (0.48, 0.85) (p < 0.001; I2: 75%). Overall, statin was associated with a reduced need for intervention for diabetic retinopathy with a hazard ratio of 0.72 (0.64, 0.80) (p < 0.001; I2: 73%). The regression-based Egger's test showed statistically significant small-study effects for non-proliferative diabetic retinopathy (p = 0.011) outcomes. CONCLUSION Statin was associated with a decreased risk of diabetic retinopathy and its subtypes. Statin also reduced the need for intervention with retinal laser treatment, intravitreal injection, and vitrectomy.
Collapse
Affiliation(s)
- Raymond Pranata
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia
| | - Rachel Vania
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia
| | - Andi Arus Victor
- Vitreo-Retinal Division, Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| |
Collapse
|
9
|
Solanki A, Bhatt LK, Johnston TP, Prabhavalkar KS. Targeting Matrix Metalloproteinases for Diabetic Retinopathy: The Way Ahead? Curr Protein Pept Sci 2019; 20:324-333. [DOI: 10.2174/1389203719666180914093109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy (DR) is a severe sight-threatening complication of diabetes. It causes
progressive damage to the retina and is the most common cause of vision impairment and blindness
among diabetic patients. DR develops as a result of various changes in the ocular environment. Such
changes include accelerated mitochondrial dysfunction, apoptosis, reactive oxygen species production,
and formation of acellular capillaries. Matrix metalloproteinases (MMPs) are one of the major culprits in
causing DR. Under physiological conditions, MMPs cause remodeling of the extracellular matrix in the
retina, while under pathological conditions, they induce retinal cell apoptosis. This review focuses on
the roles of various MMPs, primarily MMP-2 and MMP-9 in DR and also their participation in oxidative
stress, mitochondrial dysfunction, and apoptosis, along with their involvement in various signaling
pathways. This review also underscores different strategies to inhibit MMPs, thus suggesting that MMPs
may represent a putative therapeutic target in the treatment of DR.
Collapse
Affiliation(s)
- Ankita Solanki
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh K. Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Thomas P. Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Kedar S. Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
10
|
Shi R, Zhao L, Wang F, Liu F, Chen Z, Li R, Liu Y, Lin R. Effects of lipid-lowering agents on diabetic retinopathy: a Meta-analysis and systematic review. Int J Ophthalmol 2018; 11:287-295. [PMID: 29487821 PMCID: PMC5824086 DOI: 10.18240/ijo.2018.02.18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
AIM To clarify this controversy and to provide evidence for application of lipid lowering agents in treatment of diabetic retinopathy (DR). METHODS We searched the databases of PubMed, Embase and Cochrane Library Central Register of Controlled Trials (CENTRAL) and abstracts from main annual meetings up to January 1, 2017. Google scholar and ClinicalTrials.gov were also searched for unpublished relevant studies. We included randomized controlled trials (RCTs) that studied lipid-lowering agents in type 1 or type 2 diabetes in this Meta-analysis. The primary endpoint was the progression of DR, and the secondary endpoints included vision loss, development of diabetic macular edema (DME) and aggravation of hard exudates. The pooled odds ratios (OR) with corresponding 95% confidence intervals (95%CIs) were calculated. RESULTS After systemic and manual literature search by two independent investigators, we included 8 RCTs from 7 published articles with 13 454 participants in this Meta-analysis. The results revealed that lipid-lowering drugs were associated with reduced risk in DR progression [OR=0.77 (95%CI: 0.62, 0.96), P=0.02]. Lipid-lowering agents might have protective effect on DME compared to placebo, although the difference was not statistically significant [OR=0.60 (95%CI: 0.34, 1.08), P=0.09]. However, no significant differences in the worsening of vision acuity [OR=0.96 (95%CI: 0.81,1.14), P=0.64] and hard exudates [OR=0.50 (95%CI:0.15, 1.74), P=0.28] were found between the lipid-lowering drugs and the placebo groups. CONCLUSION In DR patients, lipid-lowering agents show a protective effect on DR progression and might be associated with reduced risk in the development of DME. However, lipid-lowering agents have no effects on vision loss and hard exudates aggravation. Further clinical trials in larger scale are required to confirm the conclusion of this study and thus justify the use of intensive control lipids with anti-lipid agents at the early stages of DR.
Collapse
Affiliation(s)
- Rui Shi
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City 52242, IA, USA
| | - Feng Wang
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an 710004, Shaanxi Province, China
| | - Fen Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhuo Chen
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, Shaanxi Province, China
| | - Rong Li
- Department of Ophthalmology, the First Affiliated Hospital, Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Yang Liu
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Rong Lin
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
11
|
Karásek D, Vaverková H. [Diabetic dyslipidemia and microvascular complications of diabetes]. VNITRNI LEKARSTVI 2018; 64:17-24. [PMID: 29498871 DOI: 10.36290/vnl.2018.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Diabetic dyslipidemia is one of the main risk factors for atherosclerosis. Although its participation in diabetic microvascular complications is not that dominant, dyslipidemia may play an important role in formation and progression of these complications. Pathophysiological mechanisms by which diabetic dyslipidemia affects the etiopathogenesis of diabetic nephropathy, retinopathy, neuropathy and diabetic foot are presented. The data from clinical studies and treatment possibilities for particular microvascular complications using lipid-lowering therapy are discussed.Key words: diabetes mellitus - diabetic foot - dyslipidemia - nephropathy - neuropathy - retinopathy.
Collapse
|
12
|
Sas KM, Lin J, Rajendiran TM, Soni T, Nair V, Hinder LM, Jagadish HV, Gardner TW, Abcouwer SF, Brosius FC, Feldman EL, Kretzler M, Michailidis G, Pennathur S. Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model. J Lipid Res 2017; 59:173-183. [PMID: 29237716 DOI: 10.1194/jlr.m077222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 12/12/2017] [Indexed: 01/17/2023] Open
Abstract
Lipids are ubiquitous metabolites with diverse functions; abnormalities in lipid metabolism appear to be related to complications from multiple diseases, including type 2 diabetes. Through technological advances, the entire lipidome has been characterized and researchers now need computational approaches to better understand lipid network perturbations in different diseases. Using a mouse model of type 2 diabetes with microvascular complications, we examined lipid levels in plasma and in renal, neural, and retinal tissues to identify shared and distinct lipid abnormalities. We used correlation analysis to construct interaction networks in each tissue, to associate changes in lipids with changes in enzymes of lipid metabolism, and to identify overlap of coregulated lipid subclasses between plasma and each tissue to define subclasses of plasma lipids to use as surrogates of tissue lipid metabolism. Lipid metabolism alterations were mostly tissue specific in the kidney, nerve, and retina; no lipid changes correlated between the plasma and all three tissue types. However, alterations in diacylglycerol and in lipids containing arachidonic acid, an inflammatory mediator, were shared among the tissue types, and the highly saturated cholesterol esters were similarly coregulated between plasma and each tissue type in the diabetic mouse. Our results identified several patterns of altered lipid metabolism that may help to identify pathogenic alterations in different tissues and could be used as biomarkers in future research into diabetic microvascular tissue damage.
Collapse
Affiliation(s)
- Kelli M Sas
- Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jiahe Lin
- Departments of Statistics, University of Michigan, Ann Arbor, MI 48109
| | - Thekkelnaycke M Rajendiran
- Departments of Pathology, University of Michigan, Ann Arbor, MI 48109.,Michigan Regional Comprehensive Metabolomics Resource Core Ann Arbor, MI 48105
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core Ann Arbor, MI 48105
| | - Viji Nair
- Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Lucy M Hinder
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Hosagrahar V Jagadish
- Departments of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109
| | - Thomas W Gardner
- Departments of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48109.,Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Steven F Abcouwer
- Departments of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Frank C Brosius
- Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Eva L Feldman
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Matthias Kretzler
- Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - George Michailidis
- Department of Statistics and Computer and Information Sciences, University of Florida, Gainesville, FL 32611
| | - Subramaniam Pennathur
- Division of Nephrology, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 .,Michigan Regional Comprehensive Metabolomics Resource Core Ann Arbor, MI 48105.,Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Marcovecchio ML, Chiesa ST, Bond S, Daneman D, Dawson S, Donaghue KC, Jones TW, Mahmud FH, Marshall SM, Neil HAW, Dalton RN, Deanfield J, Dunger DB. ACE Inhibitors and Statins in Adolescents with Type 1 Diabetes. N Engl J Med 2017; 377:1733-1745. [PMID: 29091568 DOI: 10.1056/nejmoa1703518] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Among adolescents with type 1 diabetes, rapid increases in albumin excretion during puberty precede the development of microalbuminuria and macroalbuminuria, long-term risk factors for renal and cardiovascular disease. We hypothesized that adolescents with high levels of albumin excretion might benefit from angiotensin-converting-enzyme (ACE) inhibitors and statins, drugs that have not been fully evaluated in adolescents. METHODS We screened 4407 adolescents with type 1 diabetes between the ages of 10 and 16 years of age and identified 1287 with values in the upper third of the albumin-to-creatinine ratios; 443 were randomly assigned in a placebo-controlled trial of an ACE inhibitor and a statin with the use of a 2-by-2 factorial design minimizing differences in baseline characteristics such as age, sex, and duration of diabetes. The primary outcome for both interventions was the change in albumin excretion, assessed according to the albumin-to-creatinine ratio calculated from three early-morning urine samples obtained every 6 months over 2 to 4 years, and expressed as the area under the curve. Key secondary outcomes included the development of microalbuminuria, progression of retinopathy, changes in the glomerular filtration rate, lipid levels, and measures of cardiovascular risk (carotid intima-media thickness and levels of high-sensitivity C-reactive protein and asymmetric dimethylarginine). RESULTS The primary outcome was not affected by ACE inhibitor therapy, statin therapy, or the combination of the two. The use of an ACE inhibitor was associated with a lower incidence of microalbuminuria than the use of placebo; in the context of negative findings for the primary outcome and statistical analysis plan, this lower incidence was not considered significant (hazard ratio, 0.57; 95% confidence interval, 0.35 to 0.94). Statin use resulted in significant reductions in total, low-density lipoprotein, and non-high-density lipoprotein cholesterol levels, in triglyceride levels, and in the ratio of apolipoprotein B to apolipoprotein A1, whereas neither drug had significant effects on carotid intima-media thickness, other cardiovascular markers, the glomerular filtration rate, or progression of retinopathy. Overall adherence to the drug regimen was 75%, and serious adverse events were similar across the groups. CONCLUSIONS The use of an ACE inhibitor and a statin did not change the albumin-to-creatinine ratio over time. (Funded by the Juvenile Diabetes Research Foundation and others; AdDIT ClinicalTrials.gov number, NCT01581476 .).
Collapse
Affiliation(s)
- M Loredana Marcovecchio
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Scott T Chiesa
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Simon Bond
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Denis Daneman
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Sarah Dawson
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Kim C Donaghue
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Timothy W Jones
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Farid H Mahmud
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - Sally M Marshall
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - H Andrew W Neil
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - R Neil Dalton
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - John Deanfield
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| | - David B Dunger
- From the Department of Paediatrics (M.L.M., D.B.D.) and the Wellcome Trust-Medical Research Council Institute of Metabolic Science (D.B.D.), University of Cambridge, and the Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital (S.B., S.D.), Cambridge, the National Centre for Cardiovascular Prevention and Outcomes, University College London (S.T.C., J.D.), and the WellChild Laboratory, Evelina London Children's Hospital, St. Thomas' Hospital (R.N.D.), London, the Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne (S.M.M.), and the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford (H.A.W.N.) - all in the United Kingdom; the Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto (D.D., F.H.M.); and the Institute of Endocrinology and Diabetes, Children's Hospital at Westmead and University of Sydney, Sydney (K.C.D.), and the Telethon Kids Institute, University of Western Australia, Perth (T.W.J.) - both in Australia
| |
Collapse
|