1
|
Collet C, Johnson NP, Mizukami T, Fearon WF, Berry C, Sonck J, Collison D, Koo BK, Meneveau N, Agarwal SK, Uretsky B, Hakeem A, Doh JH, Da Costa BR, Oldroyd KG, Leipsic JA, Morbiducci U, Taylor C, Ko B, Tonino PAL, Perera D, Shinke T, Chiastra C, Sposito AC, Leone AM, Muller O, Fournier S, Matsuo H, Adjedj J, Amabile N, Piróth Z, Alfonso F, Rivero F, Ahn JM, Toth GG, Ihdayhid A, West NEJ, Amano T, Wyffels E, Munhoz D, Belmonte M, Ohashi H, Sakai K, Gallinoro E, Barbato E, Engstrøm T, Escaned J, Ali ZA, Kern MJ, Pijls NHJ, Jüni P, De Bruyne B. Impact of Post-PCI FFR Stratified by Coronary Artery. JACC Cardiovasc Interv 2023; 16:2396-2408. [PMID: 37821185 DOI: 10.1016/j.jcin.2023.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Low fractional flow reserve (FFR) after percutaneous coronary intervention (PCI) has been associated with adverse clinical outcomes. Hitherto, this assessment has been independent of the epicardial vessel interrogated. OBJECTIVES This study sought to assess the predictive capacity of post-PCI FFR for target vessel failure (TVF) stratified by coronary artery. METHODS We performed a systematic review and individual patient-level data meta-analysis of randomized clinical trials and observational studies with protocol-recommended post-PCI FFR assessment. The difference in post-PCI FFR between left anterior descending (LAD) and non-LAD arteries was assessed using a random-effect models meta-analysis of mean differences. TVF was defined as a composite of cardiac death, target vessel myocardial infarction, and clinically driven target vessel revascularization. RESULTS Overall, 3,336 vessels (n = 2,760 patients) with post-PCI FFR measurements were included in 9 studies. The weighted mean post-PCI FFR was 0.89 (95% CI: 0.87-0.90) and differed significantly between coronary vessels (LAD = 0.86; 95% CI: 0.85 to 0.88 vs non-LAD = 0.93; 95% CI: 0.91-0.94; P < 0.001). Post-PCI FFR was an independent predictor of TVF, with its risk increasing by 52% for every reduction of 0.10 FFR units, and this was mainly driven by TVR. The predictive capacity for TVF was poor for LAD arteries (AUC: 0.52; 95% CI: 0.47-0.58) and moderate for non-LAD arteries (AUC: 0.66; 95% CI: 0.59-0.73; LAD vs non-LAD arteries, P = 0.005). CONCLUSIONS The LAD is associated with a lower post-PCI FFR than non-LAD arteries, emphasizing the importance of interpreting post-PCI FFR on a vessel-specific basis. Although a higher post-PCI FFR was associated with improved prognosis, its predictive capacity for events differs between the LAD and non-LAD arteries, being poor in the LAD and moderate in the non-LAD vessels.
Collapse
Affiliation(s)
- Carlos Collet
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium.
| | - Nils P Johnson
- Division of Cardiology, Department of Medicine, McGovern Medical School at University of Texas Health and Memorial Hermann Hospital, Houston, Texas, USA
| | - Takuya Mizukami
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium; Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| | - William F Fearon
- Division of Cardiovascular Medicine and Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Colin Berry
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom; West of Scotland Regional Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, Glasgow, United Kingdom
| | - Jeroen Sonck
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Damien Collison
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom; West of Scotland Regional Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, Glasgow, United Kingdom
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Nicolas Meneveau
- Department of Cardiology, University Hospital Jean Minjoz, Besançon, France; University of Burgundy Franche-Comté, Besançon, France
| | - Shiv Kumar Agarwal
- Division of Cardiology, Central Arkansas Veterans Health System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Barry Uretsky
- Division of Cardiology, Central Arkansas Veterans Health System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Abdul Hakeem
- Division of Cardiovascular Diseases and Cardiovascular Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Joon-Hyung Doh
- Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Bruno R Da Costa
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Keith G Oldroyd
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom; West of Scotland Regional Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, Glasgow, United Kingdom
| | - Jonathon A Leipsic
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Brian Ko
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Victoria, Australia
| | - Pim A L Tonino
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Divaka Perera
- National Institute for Health Research Guy's and St Thomas' Biomedical Research Centre, King's College London and Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Toshiro Shinke
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Claudio Chiastra
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrei C Sposito
- Department of Internal Medicine, Discipline of Cardiology, University of Campinas, Campinas, Brazil
| | - Antonio Maria Leone
- Center of Excellence in Cardiovascular Sciences, Ospedale Fatebenefratelli Isola Tiberina Gemelli Isola, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Olivier Muller
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Stephane Fournier
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Julien Adjedj
- Department of Cardiology, Arnault Tzanck Institute Saint Laurent du Var, France
| | - Nicolas Amabile
- Department of Cardiology, Institut Mutualiste Montsouris, Paris, France
| | - Zsolt Piróth
- Gottsegen National Cardiovascular Center, Budapest, Hungary
| | - Fernando Alfonso
- Cardiology Department, Hospital Universitario de La Princesa, IIS-IP, Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares, Madrid, Spain
| | - Fernando Rivero
- Cardiology Department, Hospital Universitario de La Princesa, IIS-IP, Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares, Madrid, Spain
| | - Jung-Min Ahn
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gabor G Toth
- Division of Cardiology, University Heart Center Graz, Medical University of Graz, Graz, Austria
| | - Abdul Ihdayhid
- Fiona Stanley Hospital, Harry Perkins Institute of Medical Research, Curtin University, Perth, Australia
| | | | - Tetsuya Amano
- Department of Cardiology, Aichi Medical University, Aichi, Japan
| | - Eric Wyffels
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium
| | - Daniel Munhoz
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy; Department of Internal Medicine, Discipline of Cardiology, University of Campinas, Campinas, Brazil
| | - Marta Belmonte
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Hirofumi Ohashi
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium; Department of Cardiology, Aichi Medical University, Aichi, Japan
| | - Koshiro Sakai
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium; Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium; Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Emanuele Barbato
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Thomas Engstrøm
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Javier Escaned
- Instituto de Investigacion Sanitaria Del Hospital Clinico San Carlos, Complutense University, Madrid, Spain
| | - Ziad A Ali
- St. Francis Hospital & Heart Center, Roslyn, NY, USA
| | - Morton J Kern
- University of California Irvine and Veterans Affairs Long Beach Healthcare System, Irvine, California, USA
| | - Nico H J Pijls
- Department of Cardiology, Catharina Hospital, Eindhoven, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Peter Jüni
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, onze lieve vrouw Clinic, Aalst, Belgium; Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
2
|
Tang X, Dai N, Zhang B, Cai H, Huo Y, Yang M, Jiang Y, Duan S, Shen J, Zhu M, Xu Y, Ge J. Comparison of 2D-QCA, 3D-QCA and coronary angiography derived FFR in predicting myocardial ischemia assessed by CZT-SPECT MPI. J Nucl Cardiol 2023; 30:1973-1982. [PMID: 36929293 DOI: 10.1007/s12350-023-03240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Angiography derived fractional flow reserve (angio-FFR) has been proposed. This study aimed to assess its diagnostic performance with cadmium-zinc-telluride single emission computed tomography (CZT-SPECT) as reference. METHODS AND RESULTS Patients underwent CZT-SPECT within 3 months of coronary angiography were included. Angio-FFR computation was performed using computational fluid dynamics. Percent diameter (%DS) and area stenosis (%AS) were measured by quantitative coronary angiography. Myocardial ischemia was defined as a summed difference score ≥ 2 in a vascular territory. Angio-FFR ≤ 0.80 was considered abnormal. 282 coronary arteries in 131 patients were analyzed. Overall accuracy of angio-FFR to detect ischemia on CZT-SPECT was 90.43%, with a sensitivity of 62.50% and a specificity of 98.62%. The diagnostic performance (= area under ROC = AUC) of angio-FFR [AUC = 0.91, 95% confidence intervals (CI) 0.86-0.95] was similar as those of %DS (AUC = 0.88, 95% CI 0.84-0.93, p = 0.326) and %AS (AUC = 0.88, 95% CI 0.84-0.93 p = 0.241) by 3D-QCA, but significantly higher than those of %DS (AUC = 0.59, 95% CI 0.51-0.67, p < 0.001) and %AS (AUC = 0.59, 95% CI 0.51-0.67, p < 0.001) by 2D-QCA. However, in vessels with 50-70% stenoses, AUC of angio-FFR was significantly higher than those of %DS (0.80 vs. 0.47, p < 0.001) and %AS (0.80 vs. 0.46, p < 0.001) by 3D-QCA and %DS (0.80 vs. 0.66, p = 0.036) and %AS (0.80 vs. 0.66, p = 0.034) by 2D-QCA. CONCLUSION Angio-FFR had a high accuracy in predicting myocardial ischemia assessed by CZT-SPECT, which is similar as 3D-QCA but significantly higher than 2D-QCA. While in intermediate lesions, angio-FFR is better than 3D-QCA and 2D-QCA in assessing myocardial ischemia.
Collapse
Affiliation(s)
- Xianglin Tang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Neng Dai
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - BuChun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yanlei Huo
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yongji Jiang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | | | - Jianying Shen
- Cardiology Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Mengyun Zhu
- Cardiology Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yawei Xu
- Cardiology Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|