1
|
Chen J, Huayu M, Su S, Wang S, Yang Z, Nan X, Lu D, Li Z. Vanillic Acid Alleviates Right Ventricular Function in Rats With MCT-Induced Pulmonary Arterial Hypertension. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221148896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study examined the molecular processes behind the effects of vanillic acid (VA) on right ventricular (RV) hypertrophy and function in rats with monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). There were 40 male Sprague‒Dawley (SD) rats that were separated into 4 groups: Control, PAH, MCT + VA (50 mg/kg/d), and MCT + VA (100 mg/kg/d). Male SD rats were injected with MCT once under the skin to create the PAH model (40 mg/kg). RV morphological properties were evaluated using Masson and hematoxylin and eosin (H&E) staining. Echocardiography was used to evaluate RV functioning and right ventricle–pulmonary artery (RV-PA) coupling. In addition, Rho-associated protein kinase (ROCK) pathway-related factors were evaluated using Western blotting. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory markers as well as atrial natriuretic peptide (ANP) and brain-type natriuretic peptide (BNP) in the blood of PAH rats. As a result, VA effectively reduced the development of RV cardiomyocyte hypertrophy and fibrosis in PAH rats; levels of ANP, BNP, and inflammatory markers in the blood of PAH rats were also significantly decreased by VA intervention. Additionally, VA enhanced RV functioning and RV-PA coupling in PAH rats. In response to VA, the expression of proteins related to the ROCK pathway (ROCK1, ROCK2, NFATc3, P-STAT3, and Bax) was downregulated, whereas Bcl-2 expression was elevated. This study found that VA could attenuate RV remodeling and improve RV-PA coupling in PAH rats. RV remodeling and dysfunction may be linked to the dysregulation of the ROCK pathway, and the protective action of VA on RV function may be due to a block in the ROCK signaling pathway or its downstream signaling molecules.
Collapse
Affiliation(s)
- Ju Chen
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- School of Ecological and Environmental Engineering, Qinghai University, Xining, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Shanshan Su
- Technical center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, China
| | - Shan Wang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | | | - Xingmei Nan
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- School of Ecological and Environmental Engineering, Qinghai University, Xining, China
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- Medical College, Qinghai University, Xining, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- Medical College, Qinghai University, Xining, China
| |
Collapse
|
2
|
Zhang X, Haneishi H, Liu H. Impact of ductus arteriosus constriction and restrictive foramen ovale on global hemodynamics for term fetuses with d-TGA. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3231. [PMID: 31257729 DOI: 10.1002/cnm.3231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
The ductus arteriosus (DA) constriction and restrictive foramen ovale (FO) are known as the leading cause of compromise and death of fetuses with dextro-transposition of the great arteries (d-TGA). Although the d-TGA fetal hemodynamics is of great importance in making diagnosis and management of the congenital heart defect, it remains poorly understood, particularly in terms of abnormal DA and FO. In this study, we developed a closed-loop 0-1D multiscale model of the fetal cardiovascular system (CVS) specified for the d-TGA circulation and conducted a systematic study of the impact of the DA constriction and restrictive FO on fetal hemodynamics. We found that the DA constriction led to a pronounced increase in the pulmonary artery pressure, pulmonary and mitral valve (PV and MV) regurgitation as well as left heart volume; the restrictive FO was responsible for reducing MV E/A ratio, ie, the ratio of peak early filling and late diastolic filling velocities, and PV peak systolic flow (PSV) but could increase both aortic valve (AV) PSV and aortic isthmus systolic index (ISI). Moreover, the amount of blood flowing through the DA was observed equivalent to that through the FO; the influence of DA constriction on the cerebral and placental perfusions are larger than that of the FO. Our results demonstrate that the proposed fetal cardiovascular model may be a useful tool for studying the underlying mechanisms associated with d-TGA fetal circulation and providing insights into its complex physiology and pathology.
Collapse
Affiliation(s)
- Xiancheng Zhang
- Graduate School of Engineering, Chiba University, Inage, Chiba, Japan
| | - Hideaki Haneishi
- Center for Frontier Medical Engineering, Chiba University, Inage, Chiba, Japan
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Inage, Chiba, Japan
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Center (SJTU-CU ICRC), Shanghai, China
| |
Collapse
|
3
|
Patey O, Gatzoulis MA, Thilaganathan B, Carvalho JS. Perinatal Changes in Fetal Ventricular Geometry, Myocardial Performance, and Cardiac Function in Normal Term Pregnancies. J Am Soc Echocardiogr 2017; 30:485-492.e5. [DOI: 10.1016/j.echo.2017.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 01/22/2023]
|
4
|
Schalekamp-Timmermans S, Cornette J, Hofman A, Helbing WA, Jaddoe VWV, Steegers EAP, Verburg BO. In utero origin of sex-related differences in future cardiovascular disease. Biol Sex Differ 2016; 7:55. [PMID: 27757222 PMCID: PMC5064964 DOI: 10.1186/s13293-016-0108-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/01/2016] [Indexed: 02/03/2023] Open
Abstract
Background There are sex differences in the risk of development of cardiovascular disease (CVD). According to the developmental origins of health and disease paradigm (DOHaD), CVD originates in fetal life. This study examines fetal sex differences in cardiovascular development in utero. Methods In 1028 pregnant women, we assessed fetal circulation using pulsed wave Doppler examinations between 28 and 34 weeks gestation. To test associations between fetal sex and fetal circulation measurements, linear regression models were used adjusting for fetal size, gestational age, and fetal heart rate. Results A higher pulsatility index in the ductus venosus was observed in male fetuses compared to female fetuses (difference 0.02, 95 % CI 0.01; 0.05) with a lower E/A ratio of the tricuspid (difference −0.01, 95 % CI −0.03; −0.00) and mitral (difference −0.02, 95 % CI −0.03; −0.01) valves. This was mainly determined by differences in the E wave of the tricuspid and mitral valves (differences −1.02, 95 % CI −1.81; −0.24 and −1.28, 95 % CI −2.11; −0.46, respectively). Also in males, a lower peak systolic velocity was seen in the pulmonary artery (difference −1.33, 95 % CI −2.63; −0.03) with a similar lower trend regarding peak systolic velocity in the ascending aorta. Conclusions Male fetuses exhibit an increased preload and reduced afterload conditions compared to females. While it is difficult to relate these measurements to exact cardiac function, our findings strongly suggest that the known differences in cardiovascular performance between the sexes already start in utero.
Collapse
Affiliation(s)
- Sarah Schalekamp-Timmermans
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jerome Cornette
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Willem A Helbing
- Department of Pediatrics, Erasmus MC University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus MC University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands ; Department of Pediatrics, Erasmus MC University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Bero O Verburg
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|