1
|
Cervical carcinoma risk associate with genetic polymorphisms of NEIL2 gene in Chinese population and its significance as predictive biomarker. Sci Rep 2020; 10:5136. [PMID: 32198476 PMCID: PMC7083954 DOI: 10.1038/s41598-020-62040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic polymorphisms of NEIL1 and NEIL2 maybe change protein function, and increased carcinogenesis. In this study, seven NEIL1 SNPs and three NEIL2 SNPs were selected. 400 CSCCs, 400 CIN III, and 1200 normal healthy controls were genotyped by mismatch amplification PCR. mRNA and protein expression of NEIL2 was measured in 92 freshly-obtained CSCC tumor tissues. The association between homozygote CC genotype of NEIL2 rs804270 with susceptible risk was gradually increased in CIN III (OR = 1.44) and CSCC (OR = 2.22). Carriers of C-allele (GC + CC) at rs804270 had a high risk of CSCC (OR = 1.46). The heterozygote GT genotype of rs8191664 was also closely related to the higher risk of CINIII (OR = 1.59) and CSCC (OR = 2.54). Carriers of T-allele (GT + TT) at rs8191664 had a high risk for CIN III (OR = 1.55) and CSCC (OR = 2.34). The genotypes of NEIL2 rs804270 (G/C) and rs8191664 (G/T) that were related to the higher risk for CIN III were CC-GG (OR = 1.42) and CC-GT (OR = 2.07). More notably, there was a greater risk for CSCC with the GC-GT (OR = 1.91), CC-GG (OR = 1.67), and CC-GT (OR = 6.18) genotypes. NEIL2 mRNA expression in CSCCs with the rs804270-CC genotype was lower expression than those in CSCCs with the rs804270-GG and rs804270-GC genotypes. Similarly, NEIL2 protein expression was significantly decreased in CSCCs with the rs804270-CC genotype. In summary, the two genetic polymorphisms (rs804270 and rs8191664) of NEIL2 gene were significantly associated to the increased susceptibility of CIN III or CSCC. This increased susceptibility maybe due to altered NEIL2 repair activity through altered protein expression, or changed structure of the functional domain. The genotypes of GC-GT, CC-GG, and CC-GT of rs804270 and rs8191664 of NEIL2 gene could act as a genetic predictive biomarker of susceptibility to CIN III and CSCC.
Collapse
|
2
|
Rangaswamy S, Pandey A, Mitra S, Hegde ML. Pre-Replicative Repair of Oxidized Bases Maintains Fidelity in Mammalian Genomes: The Cowcatcher Role of NEIL1 DNA Glycosylase. Genes (Basel) 2017; 8:E175. [PMID: 28665322 PMCID: PMC5541308 DOI: 10.3390/genes8070175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/16/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023] Open
Abstract
Genomic fidelity in the humans is continuously challenged by genotoxic reactive oxygen species (ROS) generated both endogenously during metabolic processes, and by exogenous agents. Mispairing of most ROS-induced oxidized base lesions during DNA replication induces mutations. Although bulky base adducts induced by ultraviolet light and other environmental mutagens block replicative DNA polymerases, most oxidized base lesions do not block DNA synthesis. In 8-oxo-G:A mispairs generated by the incorporation of A opposite unrepaired 8-oxo-G, A is removed by MutYH (MYH) for post-replicative repair, and other oxidized base lesions must be repaired prior to replication in order to prevent mutation fixation. Our earlier studies documented S phase-specific overexpression of endonuclease VIII-like 1 (NEIL1) DNA glycosylase (DG), one of five oxidized base excision repair (BER)-initiating enzymes in mammalian cells, and its high affinity for replication fork-mimicking single-stranded (ss)DNA substrates. We recently provided experimental evidence for the role of NEIL1 in replicating-strand repair, and proposed the "cowcatcher" model of pre-replicative BER, where NEIL1's nonproductive binding to the lesion base in ssDNA template blocks DNA chain elongation, causing fork regression. Repair of the lesion in the then re-annealed duplex is carried out by NEIL1 in association with the DNA replication proteins. In this commentary, we highlight the critical role of pre-replicative BER in preventing mutagenesis, and discuss the distinction between pre-replicative vs. post-replicative BER.
Collapse
Affiliation(s)
- Suganya Rangaswamy
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
- Houston Methodist Neurological Institute, Houston, TX 77030, USA.
| |
Collapse
|
3
|
|
4
|
Cipollini M, Figlioli G, Maccari G, Garritano S, De Santi C, Melaiu O, Barone E, Bambi F, Ermini S, Pellegrini G, Cristaudo A, Foddis R, Bonotti A, Romei C, Vivaldi A, Agate L, Molinari E, Barale R, Forsti A, Hemminki K, Elisei R, Gemignani F, Landi S. Polymorphisms within base and nucleotide excision repair pathways and risk of differentiated thyroid carcinoma. DNA Repair (Amst) 2016; 41:27-31. [PMID: 27062014 DOI: 10.1016/j.dnarep.2016.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022]
Abstract
The thyrocytes are exposed to high levels of oxidative stress which could induce DNA damages. Base excision repair (BER) is one of the principal mechanisms of defense against oxidative DNA damage, however recent evidences suggest that also nucleotide excision repair (NER) could be involved. The aim of present work was to identify novel differentiated thyroid cancer (DTC) risk variants in BER and NER genes. For this purpose, the most strongly associated SNPs within NER and BER genes found in our previous GWAS on DTC were selected and replicated in an independent series of samples for a new case-control study. Although a positive signal was detected at the nominal level of 0.05 for rs7689099 (encoding for an aminoacid change proline to arginine at codon 117 within NEIL3), none of the considered SNPs (i.e. rs7990340 and rs690860 within RFC3, rs3744767 and rs1131636 within RPA1, rs16962916 and rs3136166 in ERCC4, and rs17739370 and rs7689099 in NEIL3) was associated with the risk of DTC when the correction of multiple testing was applied. In conclusion, a role of NER and BER pathways was evoked in the susceptibility to DTC. However, this seemed to be limited to few polymorphic genes and the overall effect size appeared weak.
Collapse
Affiliation(s)
| | | | - Giuseppe Maccari
- Center for Nanotechnology and Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro Pisa, Italy
| | - Sonia Garritano
- Center for Integrated Biology, University of Trento, Trento, Italy
| | | | | | - Elisa Barone
- Department of Biology, University of Pisa, Pisa, Italy
| | - Franco Bambi
- Blood Centre of University Hospital of Meyer, Florence, Italy
| | - Stefano Ermini
- Blood Centre of University Hospital of Meyer, Florence, Italy
| | - Giovanni Pellegrini
- Operative Unit of laboratory of Clinical Chemistry Analyses, University Hospital of Cisanello, Pisa, Italy
| | - Alfonso Cristaudo
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Rudy Foddis
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Bonotti
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Cristina Romei
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Agnese Vivaldi
- Operative Unit of laboratory of Clinical Chemistry Analyses, University Hospital of Cisanello, Pisa, Italy
| | - Laura Agate
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Molinari
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | | | - Asta Forsti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Rossella Elisei
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Gonçalves AC, Alves R, Baldeiras I, Cortesão E, Carda JP, Branco CC, Oliveiros B, Loureiro L, Pereira A, Nascimento Costa JM, Sarmento-Ribeiro AB, Mota-Vieira L. Genetic variants involved in oxidative stress, base excision repair, DNA methylation, and folate metabolism pathways influence myeloid neoplasias susceptibility and prognosis. Mol Carcinog 2016; 56:130-148. [PMID: 26950655 DOI: 10.1002/mc.22478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 12/27/2022]
Abstract
Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) share common features: elevated oxidative stress, DNA repair deficiency, and aberrant DNA methylation. We performed a hospital-based case-control study to evaluate the association in variants of genes involved in oxidative stress, folate metabolism, DNA repair, and DNA methylation with susceptibility and prognosis of these malignancies. To that end, 16 SNPs (one per gene: CAT, CYBA, DNMT1, DNMT3A, DNMT3B, GPX1, KEAP1, MPO, MTRR, NEIL1, NFE2F2, OGG1, SLC19A1, SOD1, SOD2, and XRCC1) were genotyped in 191 patients (101 MDS and 90 AML) and 261 controls. We also measured oxidative stress (reactive oxygen species/total antioxidant status ratio), DNA damage (8-hydroxy-2'-deoxyguanosine), and DNA methylation (5-methylcytosine) in 50 subjects (40 MDS and 10 controls). Results showed that five genes (GPX1, NEIL1, NFE2L2, OGG1, and SOD2) were associated with MDS, two (DNMT3B and SLC19A1) with AML, and two (CYBA and DNMT1) with both diseases. We observed a correlation of CYBA TT, GPX1 TT, and SOD2 CC genotypes with increased oxidative stress levels, as well as NEIL1 TT and OGG1 GG genotypes with higher DNA damage. The 5-methylcytosine levels were negatively associated with DNMT1 CC, DNMT3A CC, and MTRR AA genotypes, and positively with DNMT3B CC genotype. Furthermore, DNMT3A, MTRR, NEIL1, and OGG1 variants modulated AML transformation in MDS patients. Additionally, DNMT3A, OGG1, GPX1, and KEAP1 variants influenced survival of MDS and AML patients. Altogether, data suggest that genetic variability influence predisposition and prognosis of MDS and AML patients, as well AML transformation rate in MDS patients. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal
| | - Raquel Alves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal
| | - Inês Baldeiras
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal.,Department of Neurology, Laboratory of Neurochemistry, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal
| | - Emília Cortesão
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Clinical Hematology Department, Centro Hospitalar e Universitário de Coimbra, EPE (CHUC, EPE), Coimbra, Portugal
| | - José Pedro Carda
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal.,Clinical Hematology Department, Centro Hospitalar e Universitário de Coimbra, EPE (CHUC, EPE), Coimbra, Portugal
| | - Claudia C Branco
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Ponta Delgada, São Miguel Island, Azores, Portugal.,Azores Genetics Research Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Bárbara Oliveiros
- Laboratory for Biostatistics and Medical Informatics, FMUC, Coimbra, Portugal
| | - Luísa Loureiro
- Department of Medicine, Hospital Distrital da Figueira da Foz, EPE (HDFF, EPE), Figueira da Foz, Portugal
| | - Amélia Pereira
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Department of Medicine, Hospital Distrital da Figueira da Foz, EPE (HDFF, EPE), Figueira da Foz, Portugal
| | - José Manuel Nascimento Costa
- Department of Oncology, Centro Hospitalar e Universitário de Coimbra, EPE (CHUC, EPE), Coimbra, Portugal.,Faculty of Medicine, University Clinic of Oncology, University of Coimbra-FMUC, Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal.,Clinical Hematology Department, Centro Hospitalar e Universitário de Coimbra, EPE (CHUC, EPE), Coimbra, Portugal
| | - Luisa Mota-Vieira
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Ponta Delgada, São Miguel Island, Azores, Portugal.,Azores Genetics Research Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
7
|
Polymorphism of the DNA base excision repair genes in keratoconus. Int J Mol Sci 2014; 15:19682-99. [PMID: 25356504 PMCID: PMC4264133 DOI: 10.3390/ijms151119682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/08/2014] [Accepted: 10/16/2014] [Indexed: 01/12/2023] Open
Abstract
Keratoconus (KC) is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER). Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG) gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1) were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1) nor the c.2285T>C polymorphism of the poly(ADP-ribose) polymerase-1 (PARP-1) was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease.
Collapse
|
8
|
Reddy PT, Jaruga P, Kirkali G, Tuna G, Nelson BC, Dizdaroglu M. Identification and Quantification of Human DNA Repair Protein NEIL1 by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry. J Proteome Res 2013; 12:1049-61. [DOI: 10.1021/pr301037t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Prasad T. Reddy
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Pawel Jaruga
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Güldal Kirkali
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Gamze Tuna
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
- Department of Biochemistry, School
of Medicine, Dokuz Eylul University, Izmir,
Turkey
| | - Bryant C. Nelson
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| |
Collapse
|
9
|
Matsuda T, Tao H, Goto M, Yamada H, Suzuki M, Wu Y, Xiao N, He Q, Guo W, Cai Z, Kurabe N, Ishino K, Matsushima Y, Shinmura K, Konno H, Maekawa M, Wang Y, Sugimura H. Lipid peroxidation-induced DNA adducts in human gastric mucosa. Carcinogenesis 2013; 34:121-127. [PMID: 23066087 DOI: 10.1093/carcin/bgs327] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA adducts are a major cause of DNA mutation and DNA mutation-related diseases, but the simultaneous identification of multiple DNA adducts has been a challenge for a decade. An adductome approach using consecutive liquid chromatography and double mass spectrometry after micrococcal nuclease treatment has paved the way to demonstrations of numerous DNA adducts in a single experiment and is expected to contribute to the comprehensive understanding of overall environmental and endogenous exposures to possible mutagens in individuals. In this report, we applied an adductome approach to gastric mucosa samples taken at the time of a gastrectomy for gastric cancer in Lujiang, China, and in Hamamatsu, Japan. Seven lipid peroxidation-related DNA adducts [1,N6-etheno-2'-deoxyadenosine, butanone-etheno-2'-deoxycytidine (BεdC), butanone-etheno-2'-deoxy-5-methylcytidine, butanone-etheno-2'-deoxyadenosine (BεdA), heptanone-etheno-2'-deoxycytidine, heptanone-etheno-2'-deoxyadenosine (HεdA) and heptanone-etheno- 2'-deoxyguanosine] were identified in a total of 22 gastric mucosa samples. The levels of these adducts ranged from 0 to 30,000 per 10(9) bases. Although the presence of Helicobacter pylori DNA in the mucosa was not related to these adducts level, the levels of BεdC, BεdA and HεdA were higher in the Japanese gastric mucosa samples. The profiles of these 7 adduct levels among the 21 cases were capable of discriminating between the possible origins (China or Japan) of the gastric mucosa samples. Our report is the first demonstration of lipid peroxidation-related DNA adducts in the human stomach, and these observations warrant further investigation in the context of the significance of DNA adducts in human gastric carcinogenesis.
Collapse
Affiliation(s)
- Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga 520-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sampath H, McCullough AK, Lloyd RS. Regulation of DNA glycosylases and their role in limiting disease. Free Radic Res 2012; 46:460-78. [PMID: 22300253 DOI: 10.3109/10715762.2012.655730] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review will present a current understanding of mechanisms for the initiation of base excision repair (BER) of oxidatively-induced DNA damage and the biological consequences of deficiencies in these enzymes in mouse model systems and human populations.
Collapse
Affiliation(s)
- Harini Sampath
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239 - 3098, USA
| | | | | |
Collapse
|
11
|
Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer Lett 2012; 327:73-89. [PMID: 22252118 DOI: 10.1016/j.canlet.2011.12.038] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/20/2011] [Accepted: 12/24/2011] [Indexed: 01/13/2023]
Abstract
Base excision repair is the system used from bacteria to man to remove the tens of thousands of endogenous DNA damages produced daily in each human cell. Base excision repair is required for normal mammalian development and defects have been associated with neurological disorders and cancer. In this paper we provide an overview of short patch base excision repair in humans and summarize current knowledge of defects in base excision repair in mouse models and functional studies on short patch base excision repair germ line polymorphisms and their relationship to cancer. The biallelic germ line mutations that result in MUTYH-associated colon cancer are also discussed.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, 05405-0068, United States.
| | | | | |
Collapse
|
12
|
Kim J, Pyun JA, Cho SW, Lee K, Kwack K. Lymph node metastasis of gastric cancer is associated with the interaction between poly (ADP-ribose) polymerase 1 and matrix metallopeptidase 2. DNA Cell Biol 2011; 30:1011-7. [PMID: 21612407 DOI: 10.1089/dna.2011.1250] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1), which plays a critical role in the base excision DNA repair mechanism, and matrix metallopeptidase 2 (MMP2), a member of the matrix metalloprotease family, are involved in tumor formation and metastasis, respectively. In the present study, the possible association of single nucleotide polymorphisms (SNPs) and gene-gene interaction between PARP1 and MMP2 with the increased incidence of gastric cancer (GC) development and lymph node metastasis (LNM) was investigated in a Korean population. Samples were obtained from 326 patients with chronic gastritis and 153 patients with GC and genotyped using the GoldenGate® method. The PARP1 rs1136410 genotype showed a significant association with the frequency of LNM of GC (odds ratio [OR] = 2.19, p = 0.02), LNM stage (p = 0.035), and tumor invasion (p = 0.035). The allele frequency of MMP2 rs243865 was not associated with the development of GC or with the development of LNM of GC. Epistasis between the PARP1 SNP and the MMP2 SNP was associated with the development of LNM of GC. The combination of the MMP2 rs243865 CC genotype and the PARP1 rs1136410 CC or CC+CT genotypes showed a high risk of LNM of GC (OR = 2.47, p = 0.01; OR = 2.28, p = 0.01, respectively). In summary, PARP1 is associated with the risk of LNM of GC and the stage of LNM and tumor invasion. Epistasis between PARP1 rs1136410 and MMP2 rs243865 increased the risk of LNM of GC.
Collapse
Affiliation(s)
- JiHye Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | | | | | | | | |
Collapse
|