1
|
Lu Q, Ren N, Chen H, Zhang S, Yan R, Li M, Zheng L, Tan W, Lin D. Polymorphism in the Hsa-miR-4274 seed region influences the expression of PEX5 and enhances radiotherapy resistance in colorectal cancer. Front Med 2024; 18:921-937. [PMID: 39190270 DOI: 10.1007/s11684-024-1082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/18/2024] [Indexed: 08/28/2024]
Abstract
Identifying biomarkers for predicting radiotherapy efficacy is crucial for optimizing personalized treatments. We previously reported that rs1553867776 in the miR-4274 seed region can predict survival in patients with rectal cancer receiving postoperative chemoradiation therapy. Hence, to investigate the molecular mechanism of the genetic variation and its impact on the radiosensitivity of colorectal cancer (CRC), in this study, bioinformatics analysis is combined with functional experiments to confirm peroxisomal biogenesis factor 5 (PEX5) as a direct target of miR-4274. The miR-4274 rs1553867776 variant influences the binding of miR-4274 and PEX5 mRNA, which subsequently regulates PEX5 protein expression. The interaction between PEX5 and Ku70 was verified by co-immunoprecipitation and immunofluorescence. A xenograft tumor model was established to validate the effects of miR-4274 and PEX5 on CRC progression and radiosensitivity in vivo. The overexpression of PEX5 enhances radiosensitivity by preventing Ku70 from entering the nucleus and reducing the repair of ionizing radiation (IR)-induced DNA damage by the Ku70/Ku80 complex in the nucleus. In addition, the enhanced expression of PEX5 is associated with increased IR-induced ferroptosis. Thus, targeting this mechanism might effectively increase the radiosensitivity of CRC. These findings offer novel insights into the mechanism of cancer radioresistance and have important implications for clinical radiotherapy.
Collapse
Affiliation(s)
- Qixuan Lu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ningxin Ren
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongxia Chen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shaosen Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruoqing Yan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mengjie Li
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Linlin Zheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Farah CS, Shearston K, Melton PE, Fox SA. Genome-wide characterization of the mutational landscape of proliferative verrucous leukoplakia. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:99-111. [PMID: 38760284 DOI: 10.1016/j.oooo.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVES Proliferative verrucous leukoplakia (PVL) is a rare but highly aggressive variant of oral leukoplakia that almost inevitably progresses to oral squamous cell carcinoma (OSCC). The aims of this study were to perform whole exome sequencing of a cohort of patients diagnosed with PVL and identify potential mutational profiles and pathways in this disorder. STUDY DESIGN A total of 12 oral cavity mucosal biopsies from 6 patients with oral lesions clinically compatible with PVL were used. Of these, 9 were diagnosed as dysplasia, 1 OSCC, and 2 hyperkeratosis/hyperplasia. Exome sequencing used the Ion AmpliSeq Exome platform. Ion Reporter software was used for variant calling, annotation, and filtering. Analysis and visualization of somatic mutations was carried out using the MAFtools R package. RESULTS Following exome sequencing and mutational profiling, we analyzed the profiles for cancer associated genes and signatures. Genes previously associated with OSCC, including HYDIN, MUC16, MAML3, CDKN2A, FAT1, and CASP8, were mutated in multiple samples. Several DNA damage repair genes including PARP1 were mutated in PVL samples. NOTCH and Hippo pathways were the most frequently impacted by mutation. CONCLUSIONS This genome wide characterization of premalignant PVL identifies both known and potentially novel oncogenic mechanisms in this disorder.
Collapse
Affiliation(s)
- Camile S Farah
- Australian Centre for Oral Oncology Research & Education, Nedlands WA, Australia; Central Queensland University, Rockhampton, Queensland, Australia; Genomics for Life, Milton QLD, Australia.
| | - Kate Shearston
- Australian Centre for Oral Oncology Research & Education, Nedlands WA, Australia; UWA Dental School, University of Western Australia, Nedlands WA, Australia
| | - Phillip E Melton
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; School of Population and Global Health, University of Western Australia, Crawley, WA, Australia
| | - Simon A Fox
- Australian Centre for Oral Oncology Research & Education, Nedlands WA, Australia; UWA Dental School, University of Western Australia, Nedlands WA, Australia
| |
Collapse
|
3
|
Ghafouri-Fard S, Askari A, Zangooie A, Shoorei H, Pourmoshtagh H, Taheri M. Non-coding RNA profile for natural killer cell activity. Mol Cell Probes 2023; 72:101935. [PMID: 37806642 DOI: 10.1016/j.mcp.2023.101935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Natural killer cells (NK cells) are a type of cytotoxic lymphocytes which are involved in innate immunity, alongside with assisting with adaptive immune response. Since they have cytotoxic effects, disruptions in their functionality and development leads to a variety of conditions, whether malignant or non-malignant. The profile and interaction of these non-coding RNAs and NK cells in different conditions is extensively studied, and it is now approved that if dysregulated, non-coding RNAs have detrimental effects on NK cell activity and can contribute to the pathogenesis of diverse disorders. In this review, we aim at a thorough inspection on the role of different non-coding RNAs on the activity and development of NK cells, in a broad spectrum of conditions, including blood-related disorders, viral infections, neurological diseases, gastrointestinal disorders, lung disorders, reproductive system conditions and other types of maladies, alongside with providing insight to the future non-coding RNA-NK cell studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zangooie
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Shoorei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hasan Pourmoshtagh
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Suppression of Long Noncoding RNA SNHG1 Inhibits the Development of Hypopharyngeal Squamous Cell Carcinoma via Increasing PARP6 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1562219. [PMID: 35836822 PMCID: PMC9276473 DOI: 10.1155/2022/1562219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Purpose This study aimed to explore the function and molecular mechanism of long noncoding RNA Small Nucleolar RNA Host Gene 1 (SNHG1) in the development of hypopharyngeal squamous cell carcinoma (HSCC). Methods Human HSCC cell line FaDu was used in this study. Cell viability and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. Cell migration and invasion were measured by Transwell assay. The expression of PARP6, XRCC6, β-catenin, and EMT-related proteins (E-cadherin and N-cadherin) were determined using western blotting. Moreover, the regulatory relationship between SNHG1 and PARP6 was investigated. Furthermore, the effects of the SNHG1/PARP6 axis on tumorigenicity were explored in vivo. Results Suppression of SNHG1 suppressed the viability, migration, and invasion but promoted apoptosis of FaDu cells in vitro (P < 0.01). PARP6 is a target of SNHG1, which was upregulated by SNHG1 knockdown in FaDu cells (P < 0.01). SNHG1 suppression and RARP6 overexpression inhibited FaDu cell proliferation, migration, and invasion (P < 0.05). SNHG1 suppression and RARP6 overexpression also inhibited tumorigenicity of HSCC in vivo. Furthermore, the protein expression of E-cadherin was significantly increased and that of N-cadherin, β-catenin, and XRCC6 was dramatically decreased in HSCC after SNHG1 suppression or/and RARP6 overexpression both in vitro and in vivo (P < 0.01). Conclusions SNHG1 silencing inhibits HSCC malignant progression via upregulating PARP6. XRCC6/β-catenin/EMT axis may be a possible downstream mechanism of the SNHG1/PARP6 axis in HSCC. SNHG1/PARP6 can be used as a promising target for the treatment of HSCC.
Collapse
|
5
|
Ruan Y, Xu H, Ji X. High expression of NPM1 via the Wnt/β-catenin signalling pathway might predict poor prognosis for patients with prostate adenocarcinoma. Clin Exp Pharmacol Physiol 2022; 49:525-535. [PMID: 35108408 DOI: 10.1111/1440-1681.13628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/29/2022]
Abstract
Prostate adenocarcinoma (PRAD) occurs only in males and has a higher incidence rate than other cancers. NPM1 is a nucleocytoplasmic shuttling protein that participates in the development of multiple tumours. The aim of this research was to explore the effect of the upregulation or downregulation of the NPM1 protein on the malignancy of prostate cancer and its possible signalling pathway. Prostate adenocarcinoma cell lines were used in this study, including RWPE-1, PC3, LNCap, and 22RV1 cells. Our research revealed that NPM1 was widely expressed in the PRAD cell lines, as determined by Western blotting, and that the levels of NPM1 protein were positively correlated with the degree of malignancy of the PRAD cell lines. Through interference and overexpression experiments, we found that PC3 cells growth was inhibited after NPM1 knockdown and that this inhibition was partly reversed by CTNNB1 overexpression; in contrast, PC3 cells growth was promoted after NPM1 overexpression, and this promotion was partly reversed by CTNNB1 knockdown, suggesting that NPM1 and CTNNB1 play important roles in the progression of prostate cancer cells via the Wnt/β-catenin signalling pathway. NPM1 may serve as an important biomarker and candidate therapeutic for patients with prostate cancer.
Collapse
Affiliation(s)
- Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, 550025, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, 550025, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
6
|
Architecture of The Human Ape1 Interactome Defines Novel Cancers Signatures. Sci Rep 2020; 10:28. [PMID: 31913336 PMCID: PMC6949240 DOI: 10.1038/s41598-019-56981-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
APE1 is essential in cancer cells due to its central role in the Base Excision Repair pathway of DNA lesions and in the transcriptional regulation of genes involved in tumor progression/chemoresistance. Indeed, APE1 overexpression correlates with chemoresistance in more aggressive cancers, and APE1 protein-protein interactions (PPIs) specifically modulate different protein functions in cancer cells. Although important, a detailed investigation on the nature and function of protein interactors regulating APE1 role in tumor progression and chemoresistance is still lacking. The present work was aimed at analyzing the APE1-PPI network with the goal of defining bad prognosis signatures through systematic bioinformatics analysis. By using a well-characterized HeLa cell model stably expressing a flagged APE1 form, which was subjected to extensive proteomics analyses for immunocaptured complexes from different subcellular compartments, we here demonstrate that APE1 is a central hub connecting different subnetworks largely composed of proteins belonging to cancer-associated communities and/or involved in RNA- and DNA-metabolism. When we performed survival analysis in real cancer datasets, we observed that more than 80% of these APE1-PPI network elements is associated with bad prognosis. Our findings, which are hypothesis generating, strongly support the possibility to infer APE1-interactomic signatures associated with bad prognosis of different cancers; they will be of general interest for the future definition of novel predictive disease biomarkers. Future studies will be needed to assess the function of APE1 in the protein complexes we discovered. Data are available via ProteomeXchange with identifier PXD013368.
Collapse
|
7
|
Association between VNTR polymorphism in promoter region of XRCC5 and susceptibility to acute lymphoblastic leukemia risk. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Yueh TC, Hung YW, Shih TC, Wu CN, Wang SC, Lai YL, Hsu SW, Wu MH, Fu CK, Wang YC, Ke TW, Chang WS, Tsai CW, Bau DAT. Contribution of Murine Double Minute 2 Genotypes to Colorectal Cancer Risk in Taiwan. Cancer Genomics Proteomics 2018; 15:405-411. [PMID: 30194081 DOI: 10.21873/cgp.20099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIM The genomic role of human mouse double minute 2 (MDM2) in colorectal cancer (CRC) is unclear, therefore, our study aimed to evaluate the contribution of MDM2 genotype to the risk of CRC in Taiwan. MATERIALS AND METHODS In this case-control study, MDM2 SNP309 T to G (rs2279744) genotypes were determined and their association with CRC risk were investigated among 362 patients with CRC and 362 age- and gender-matched healthy controls in central Taiwan. In addition, the interaction of MDM2 SNP309 genotypes with personal behaviors and clinicopathological features were also examined. RESULTS The percentage of variant GG for the MDM2 SNP309 genotype was 30.9% in the CRC group and 24.0% in the control group, respectively (odds ratio (OR)=1.78, 95% confidence interval (CI)=1.25-2.86, p=0.0057). The allelic frequency distribution analysis showed that the variant G allele of MDM2 SNP309 conferred a significantly increased susceptibility to CRC compared with the wild-type T allele (OR=1.32, 95% CI=1.14-1.69, p=0.0062). As for the gene-lifestyle interaction, there was an obvious joint effect of MDM2 SNP309 GG genotype on the risk of CRC among ever-smokers and non-alcohol drinkers, but not non-smoker or alcohol drinker subgroups. No statistically significant correlation was observed between MDM2 SNP309 genotypic distributions and age, gender, tumor size, location or metastasis status. CONCLUSION The genotypes of MDM2 SNP309 may allow forr early detection of and predictor for CRC risk, especially among smokers and non-alcohol drinkers, but not for prognosis. The combined effects of MDM2 SNP309 and other genes (such as matrix metalloproteinases) on CRC susceptibility and prognosis, should also be taken into consideration in the era of precision medicine.
Collapse
Affiliation(s)
- Te-Cheng Yueh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C.,National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yi-Wen Hung
- Department of Medicine Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.,Animal Radiation Therapy Research Center, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Tzu-Ching Shih
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan, R.O.C
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Shou-Cheng Wang
- Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C.,National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yi-Liang Lai
- Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C.,National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Shih-Wei Hsu
- Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C.,National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Ming-Hsien Wu
- Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C.,National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chun-Kai Fu
- Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C.,National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yun-Chi Wang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Tao-Wei Ke
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
9
|
Yueh TC, Wu CN, Hung YW, Chang WS, Fu CK, Pei JS, Wu MH, Lai YL, Lee YM, Yen ST, Li HT, Tsai CW, Bau DAT. The Contribution of MMP-7 Genotypes to Colorectal Cancer Susceptibility in Taiwan. Cancer Genomics Proteomics 2018; 15:207-212. [PMID: 29695403 DOI: 10.21873/cgp.20079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Matrix metalloproteinases (MMPs) play important roles in inflammation and carcinogenesis, but the genotypic role of MMP-7 has never been investigated in colorectal cancer (CRC) among the Taiwanese. Therefore, in this study we aimed to evaluate the contribution of MMP-7 genotypes to the risk of CRC in Taiwan. MATERIALS AND METHODS In this case-control study, MMP-7 A-181G and C-153T promoter genotypes were determined and their association with CRC risk were investigated among 362 CRC patients and 362 age- and gender-matched healthy controls. In addition, the interaction of MMP-7 genotypes and personal behaviors were also examined. RESULTS The percentages of variant AG and GG for MMP-7 A-181G genotypes were 10.5% and 1.7% in the CRC group and 11.9% and 2.2% in the control group, respectively (p for trend=0.7145). The allelic frequency distribution analysis showed that the variant G allele of MMP-7 A-181G conferred a slight but non-significant decreased CRC susceptibility to the wild-type C allele (odds ratio (OR)=0.86, 95% confidence interval (CI)=0.64-1.31, p=0.37). Taiwanese all harbour the CC genotype at MMP-7 C-153T. As for the gene-lifestyle interaction, there were no obvious joint effects of MMP-7 A-181G genotype on the risk of CRC among ever smoker, alcohol drinker, non-smoker or non-drinker subgroups. No statistically significant correlation was observed between MMP-7 A-181G genotypic distributions and age, gender, tumor size, location or metastasis status. CONCLUSION The genotypes of MMP-7 A-181G may play an indirect role in determining personal susceptibility to CRC and prognosis. The further genotyping work on MMP-7 and other genes (such as other MMPs, oncogenes and tumor suppression genes) on CRC susceptibility and prognosis, should be taken into consideration spontaneously in the precision medicine era.
Collapse
Affiliation(s)
- Te-Cheng Yueh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Translational Medical Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,National Defence Medical Center, Taipei, Taiwan, R.O.C
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Yi-Wen Hung
- Department of Medicine Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medical Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chun-Kai Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C
| | - Jen-Sheng Pei
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Ming-Hsien Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Liang Lai
- Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Min Lee
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Shiou-Ting Yen
- Terry Fox Cancer Research Laboratory, Translational Medical Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Hsin-Ting Li
- Terry Fox Cancer Research Laboratory, Translational Medical Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medical Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory, Translational Medical Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
10
|
Dimberg J, Skarstedt M, Slind Olsen R, Andersson RE, Matussek A. Gene polymorphism in DNA repair genes XRCC1 and XRCC6 and association with colorectal cancer in Swedish patients. APMIS 2016; 124:736-40. [PMID: 27328741 DOI: 10.1111/apm.12563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 11/28/2022]
Abstract
The DNA repair genes XRCC1 and XRCC6 have been proposed to participate in the pathological process of cancer by modulating the DNA repair capacity. This study evaluated the susceptibility of the single-nucleotide polymorphisms (SNPs) XRCC1 (rs25487, G > A) and XRCC6 (rs2267437, C > G) to colorectal cancer (CRC) and their association with clinical parameters in Swedish patients with CRC. Using the TaqMan system, these SNPs were screened in 452 patients and 464 controls. No significant difference in genotype distribution was found between the patients and controls, or any significant association with cancer-specific or disease-free survival in patients. However, we showed that the carriers of allele A in XRCC1 (rs25487, G > A) were connected with a higher risk of disseminated CRC (Odds Ratio = 1.64; 95% Confidence Interval = 1.12-2.41, p = 0.012).
Collapse
Affiliation(s)
- Jan Dimberg
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Marita Skarstedt
- Division of Medical Diagnostics, Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| | - Renate Slind Olsen
- Division of Medical Diagnostics, Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden.,Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | - Andreas Matussek
- Division of Medical Diagnostics, Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| |
Collapse
|
11
|
Saadat M, Pashaei S, Amerizade F. Susceptibility to gastric cancer and polymorphisms of insertion/deletion at the intron 3 of the XRCC4 and VNTR at the promoter region of the XRCC5. Pathol Oncol Res 2015; 21:689-693. [PMID: 25527410 DOI: 10.1007/s12253-014-9875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/05/2014] [Indexed: 12/18/2022]
Abstract
The genes encoding X-ray repair cross-complementing group 4 (XRCC4; OMIM: 194363) and 5 (XRCC5; OMIM: 194364) are involved in repair of DNA double-strand breaks. To investigating the associations between polymorphisms of Insertion/Deletion (I/D, rs28360071) in the intron 3 of the XRCC4 and VNTR in the promoter region of the XRCC5 and risk of gastric cancer, the present study was carried out. We included 159 (56 females, 103 males) with gastric cancer and 242 (75 females, 167 males) healthy blood donors frequency matched for age and gender. Using PCR-based methods, the genotypes of the study polymorphisms were determined. The alleles of VNTR XRCC5 polymorphism divided into two groups: L (0 and 1 repeats) and H (2 and 3 repeats) alleles. For the I/D XRCC4 polymorphism, after stratification of the subjects according to their family history (FH) of cancer, either the ID (OR = 3.19, 95%CI: 1.35-7.50, P = 0.008) or the DD genotypes (OR = 4.62, 95%CI: 1.63-13.0, P = 0.004) among positive FH persons, increased the risk of gastric cancer compared with the reference group (persons who have negative FH and II genotype). For the VNTR XRCC5 polymorphism, the LH + HH genotypes among positive FH persons, increased the risk of gastric cancer compared with the reference group (persons who have negative FH and LL genotype) (OR = 2.88, 95%CI: 1.34-6.18, P = 0.006). Sensitivity analysis showed that the above mentioned associations were not occurred due to the maldistribution of the genotypes among missing data. The present study suggests that both polymorphisms of the XRCC4 and XRCC5 might be risk factors for gastric cancer development especially among persons with positive FH.
Collapse
Affiliation(s)
- Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz, 71454, Iran,
| | | | | |
Collapse
|
12
|
Jin T, Wang Y, Li G, Du S, Yang H, Geng T, Hou P, Gong Y. Analysis of difference of association between polymorphisms in the XRCC5, RPA3 and RTEL1 genes and glioma, astrocytoma and glioblastoma. Am J Cancer Res 2015; 5:2294-300. [PMID: 26328260 PMCID: PMC4548341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Gliomas are the most common aggressive brain tumors and have many complex pathological types. Previous reports have discovered that genetic mutations are associated with the risk of glioma. However, it is unclear whether uniform genetic mutations exist difference between glioma and its two pathological types in the Han Chinese population. MATERIALS AND METHODS We evaluated 20 SNPs of 703 glioma cases (338 astrocytoma cases, 122 glioblastoma cases) and 635 controls in a Han Chinese population using χ(2) test and genetic model analysis. RESULTS In three case-control studies, we found rs9288516 in XRCC5 gene showed a decreased risk of glioma (OR, 0.85; 95% CI, 0.73-0.99; P = 0.042) and glioblastoma (OR, 0.70; 95% CI, 0.52-0.92; P = 0.001) in the allele model. We identified rs414805 in RPA3 gene showed an increased risk of glioblastoma in allele model (OR, 1.38; 95% CI, 1.00-1.89; P = 0.047) and dominant model (OR, 1.57; 95% CI, 1.05-2.35; P = 0.027), analysis respectively. Meanwhile, rs2297440 in RTEL1 gene showed an increased risk of glioma (OR, 1.30; 95% CI, 1.10-1.54; P = 0.002) and astrocytoma (OR, 1.26; 95% CI, 1.02-1.54; P = 0.029) in the allele model. In addition, we also observed a haplotype of "GCT" in the RTEL1 gene with an increased risk of astrocytoma (P = 0.005). CONCLUSIONS Polymorphisms in the XRCC5, RPA3 and RTEL1 genes, combinating with previous reaserches, are associated with glioma developing. However, those genes mutations may play different roles in the glioma, astrocytoma and glioblastoma, respectively.
Collapse
Affiliation(s)
- Tianbo Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest UniversityXi’an 710069, China
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest UniversityXi’an 710069, China
| | - Yuan Wang
- Department of Trauma, The Second Affiliated Hospital, Inner Mongolia Medical UniversityHohhot 010030, China
| | - Gang Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, China
| | - Shuli Du
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest UniversityXi’an 710069, China
| | - Hua Yang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest UniversityXi’an 710069, China
| | - Tingting Geng
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest UniversityXi’an 710069, China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University School of MedicineXi’an 710061, China
| | - Yongkuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest UniversityXi’an 710069, China
| |
Collapse
|
13
|
Chao YT, Hsu CJ, Yu YL, Yen JY, Ho MC, Chen YY, Chang HC, Lian FL. A novel sound-blocking structure based on the muffler principle for rib-sparing transcostal high-intensity focused ultrasound treatment. Int J Hyperthermia 2015; 31:507-27. [DOI: 10.3109/02656736.2015.1028483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Yu-Tin Chao
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Che-Jung Hsu
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Ya-Lin Yu
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Jia-Yush Yen
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, and
| | - Yung-Yaw Chen
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Hung-Cheng Chang
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Feng-Li Lian
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
14
|
hnRNP K in PU.1-containing complexes recruited at the CD11b promoter: a distinct role in modulating granulocytic and monocytic differentiation of AML-derived cells. Biochem J 2014; 463:115-22. [PMID: 25005557 DOI: 10.1042/bj20140358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PU.1 is essential for the differentiation of haemopoietic precursors and is strongly implicated in leukaemogenesis, yet the protein interactions that regulate its activity in different myeloid lineages are still largely unknown. In the present study, by combining fluorescent EMSA (electrophoretic mobility-shift assay) with MS, we reveal the presence of hnRNP K (heterogeneous nuclear ribonucleoprotein K) in molecular complexes that PU.1 forms on the CD11b promoter during the agonist-induced maturation of AML (acute myeloid leukaemia)-derived cells along both the granulocytic and the monocytic lineages. Although hnRNP K and PU.1 act synergistically during granulocytic differentiation, hnRNP K seems to have a negative effect on PU.1 activity during monocytic maturation. Since hnRNP K acts as a docking platform, integrating signal transduction pathways to nucleic acid-directed processes, it may assist PU.1 in activating or repressing transcription by recruiting lineage-specific components of the transcription machinery. It is therefore possible that hnRNP K plays a key role in the mechanisms underlying the specific targeting of protein-protein interactions identified as mediators of transcriptional activation or repression and may be responsible for the block of haemopoietic differentiation.
Collapse
|
15
|
Gorre M, Mohandas PE, Kagita S, Annamaneni S, Digumarti R, Satti V. Association of XRCC5 VNTR polymorphism with the development of chronic myeloid leukemia. Tumour Biol 2013; 35:923-7. [PMID: 23982877 DOI: 10.1007/s13277-013-1120-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022] Open
Abstract
Double-strand breaks (DSBs) inducing agents influence the fidelity of DNA repair in both normal cells and leukemic cells, causing major genomic instability. In eukaryotic cells, non-homologous end joining pathway (NHEJ) is the major mechanism for DSB repair. Human X-ray repair cross-complementing 5 (XRCC5) gene encodes for the protein KU86, an important component of NHEJ pathway. Variable number of tandem repeats (VNTR) polymorphism (rs 6147172) in the promoter region of XRCC5 gene was shown to have effect on gene expression and was found to be associated with the development of several cancers. We analyzed VNTR polymorphism of XRCC5 gene in 461 chronic myeloid leukemia (CML) cases and 408 controls by polymerase chain reaction. Our results showed that frequency of 0R/0R genotype was significantly elevated in CML cases compared to that of controls (p = 0.05). Significant difference in the genotype distribution was observed between cases and controls (p = 0.02). The risk of CML development was found to be elevated for individuals carrying lower repeats (1R p = 0.03; 0R p = 0.007). Elevated 0R/0R genotype frequency was found to be significantly associated with early age at onset (≤ 30 years) and slightly elevated in chronic phase and poor hematologic response to imatinib mesylate. The influence of zero repeat on enhanced expression of XRCC5 might confer risk to error-prone repair leading to genomic instability and CML. Hence, the VNTR polymorphism in the promoter region of XRCC5 gene could serve as an important prognostic marker in CML development.
Collapse
Affiliation(s)
- Manjula Gorre
- CSIR-SRF, Department of Genetics, Osmania University, Hyderabad, India,
| | | | | | | | | | | |
Collapse
|