1
|
Manero-Roig I, Polo Y, Pardo-Rodríguez B, Luzuriaga J, Basanta-Torres R, Martín-Aragón D, Romayor I, Martín-Colomo S, Márquez J, Gomez-Santos L, Lanore F, Humeau Y, Ibarretxe G, Eguizabal C, Larrañaga A, Pineda JR. Intracranial graft of bioresorbable polymer scaffolds loaded with human Dental Pulp Stem Cells in stab wound murine injury model. Methods Cell Biol 2024; 188:237-254. [PMID: 38880526 DOI: 10.1016/bs.mcb.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The prevalence of central nervous system (CNS) dysfunction as a result of disease or trauma remains a clinically unsolved problem which is raising increased awareness in our aging society. Human Dental Pulp Stem Cells (hDPSCs) are excellent candidates to be used in tissue engineering and regenerative therapies of the CNS due to their neural differentiation ability and lack of tumorigenicity. Accordingly, they have been successfully used in animal models of spinal cord injury, stroke and peripheral neuropathies. The ideal therapy in brain injury should combine strategies aiming to protect the damaged lesion and, at the same time, accelerate brain tissue regeneration, thus promoting fast recovery while minimizing side or long-term effects. The use of bioresorbable nanopatterned poly(lactide-co-ɛ-caprolactone) (PLCL) polymeric scaffolds as hDPCSs carriers can represent an advantage for tissue regeneration. In this chapter, we describe the surgical procedures to implant functionalized bioresorbable scaffolds loaded with hDPSCs to improve the brain lesion microenvironment in an intracranial stab wound injury model severing the rostral migratory stream (RMS) that connects the brain subventricular zone (SVZ) and the olfactory bulb in nude mice. Additionally, we also describe the technical steps after animal sacrifice for histological tissue observation and characterization.
Collapse
Affiliation(s)
- Irene Manero-Roig
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; University of Bordeaux, CNRS, IINS, UMR 5297, Bordeaux, France
| | - Yurena Polo
- Polimerbio SL, Donostia-San Sebastián, Spain
| | - Beatriz Pardo-Rodríguez
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Luzuriaga
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ruth Basanta-Torres
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Daniel Martín-Aragón
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Irene Romayor
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Cell Therapy, Stem Cells and Tissues Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Advanced Therapies Unit, Basque Center for Blood Transfusion and Human Tissues, Bizkaia, Spain
| | - Sara Martín-Colomo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Joana Márquez
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Gomez-Santos
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Frédéric Lanore
- University of Bordeaux, CNRS, IINS, UMR 5297, Bordeaux, France
| | - Yann Humeau
- University of Bordeaux, CNRS, IINS, UMR 5297, Bordeaux, France
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Advanced Therapies Unit, Basque Center for Blood Transfusion and Human Tissues, Bizkaia, Spain.
| | - Aitor Larrañaga
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Jose Ramon Pineda
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience Fundazioa, Leioa, Spain.
| |
Collapse
|
2
|
Ren L, Zhu X, Tan J, Lv X, Wang J, Hua F. MiR-210 promotes bone formation in ovariectomized rats by regulating osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells through downregulation of EPHA2. J Orthop Surg Res 2023; 18:811. [PMID: 37904187 PMCID: PMC10617172 DOI: 10.1186/s13018-023-04213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/16/2023] [Indexed: 11/01/2023] Open
Abstract
PURPOSE In osteoporosis, the balance between osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) is disrupted. The osteogenic differentiation of bone marrow MSCs (BMSCs) is important for improving osteoporosis. The aim of this study was to explore the role and molecular mechanism of miR-210 in the balance of osteogenic/adipogenic differentiation of BMSCs in postmenopausal osteoporosis. METHODS Postmenopausal osteoporosis rat models were constructed by ovariectomy (OVX). BMSCs were isolated from the femur in rats of Sham and OVX groups. MiR-210 was overexpressed and suppressed by miR-210 mimics and inhibitor, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the relative mRNA expression of miR-210, ephrin type-A receptor 2 (EPHA2), alkaline phosphatase (ALP), osterix (OSX), osteocalcin (Bglap), Runt-related transcription factor 2 (Runx2), peroxisome proliferator activated receptor gamma, and fatty acid binding protein 4 (FABP4) in each group of rat femoral tissues or BMSCs. Western blot was applied to detect the protein expression level of EPHA2 in rat femoral tissues and cells. Alizarin red S staining and oil red O staining were performed to assess the osteogenic and adipogenic differentiation of BMSCs, respectively. In addition, the targeting relationship between miR-210 and EPHA2 was verified by a dual luciferase gene reporter assay. RESULTS The expression of miR-210 was significantly reduced in femoral tissues and BMSCs of OVX rats, and its low expression was associated with reduced bone formation. The osteogenic differentiation was enhanced in OVX rats treated with miR-210 mimic. Overexpression of miR-210 in transfected BMSCs was also found to significantly promote osteogenic differentiation and even inhibit adipogenic differentiation in BMSCs, while knockdown of miR-210 did the opposite. Further mechanistic studies showed that miR-210 could target and inhibit the expression of EPHA2 in BMSCs, thus promoting osteogenic differentiation and inhibiting adipogenic differentiation of BMSCs. CONCLUSION MiR-210 promotes osteogenic differentiation and inhibits adipogenic differentiation of BMSCs by down-regulating EPHA2 expression. As it plays an important role in the osteogenic/adipogenic differentiation of osteoporosis, miR-210 can serve as a potential miRNA biomarker for osteoporosis.
Collapse
Affiliation(s)
- Lijue Ren
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213100, Jiangsu, China
- Department of Endocrinology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
| | - Xiaohui Zhu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213100, Jiangsu, China
| | - Jiuting Tan
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213100, Jiangsu, China
| | - Xiangyu Lv
- Department of Endocrinology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
| | - Jiahui Wang
- Department of Endocrinology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213100, Jiangsu, China.
| |
Collapse
|
3
|
Li J, Wang X, Li X, Liu D, Zhai L, Wang X, Kang R, Yokota H, Yang L, Zhang P. Mechanical Loading Promotes the Migration of Endogenous Stem Cells and Chondrogenic Differentiation in a Mouse Model of Osteoarthritis. Calcif Tissue Int 2023; 112:363-376. [PMID: 36566445 DOI: 10.1007/s00223-022-01052-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/15/2022] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is a major health problem, characterized by progressive cartilage degeneration. Previous works have shown that mechanical loading can alleviate OA symptoms by suppressing catabolic activities. This study evaluated whether mechanical loading can enhance anabolic activities by facilitating the recruitment of stem cells for chondrogenesis. We evaluated cartilage degradation in a mouse model of OA through histology with H&E and safranin O staining. We also evaluated the migration and chondrogenic ability of stem cells using in vitro assays, including immunohistochemistry, immunofluorescence, and Western blot analysis. The result showed that the OA mice that received mechanical loading exhibited resilience to cartilage damage. Compared to the OA group, mechanical loading promoted the expression of Piezo1 and the migration of stem cells was promoted via the SDF-1/CXCR4 axis. Also, the chondrogenic differentiation was enhanced by the upregulation of SOX9, a transcription factor important for chondrogenesis. Collectively, the results revealed that mechanical loading facilitated cartilage repair by promoting the migration and chondrogenic differentiation of endogenous stem cells. This study provided new insights into the loading-driven engagement of endogenous stem cells and the enhancement of anabolic responses for the treatment of OA.
Collapse
Affiliation(s)
- Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoyu Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xuetong Wang
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Kang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
4
|
Zhou X, Cao H, Guo J, Yuan Y, Ni G. Effects of BMSC-Derived EVs on Bone Metabolism. Pharmaceutics 2022; 14:1012. [PMID: 35631601 PMCID: PMC9146387 DOI: 10.3390/pharmaceutics14051012] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane vesicles that can be secreted by most cells. EVs can be released into the extracellular environment through exocytosis, transporting endogenous cargo (proteins, lipids, RNAs, etc.) to target cells and thereby triggering the release of these biomolecules and participating in various physiological and pathological processes. Among them, EVs derived from bone marrow mesenchymal stem cells (BMSC-EVs) have similar therapeutic effects to BMSCs, including repairing damaged tissues, inhibiting macrophage polarization and promoting angiogenesis. In addition, BMSC-EVs, as efficient and feasible natural nanocarriers for drug delivery, have the advantages of low immunogenicity, no ethical controversy, good stability and easy storage, thus providing a promising therapeutic strategy for many diseases. In particular, BMSC-EVs show great potential in the treatment of bone metabolic diseases. This article reviews the mechanism of BMSC-EVs in bone formation and bone resorption, which provides new insights for future research on therapeutic strategies for bone metabolic diseases.
Collapse
Affiliation(s)
- Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China;
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (J.G.); (Y.Y.)
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (J.G.); (Y.Y.)
| | - Jianming Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (J.G.); (Y.Y.)
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (J.G.); (Y.Y.)
| | - Guoxin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China;
| |
Collapse
|
5
|
Abdurahman A, Li X, Li J, Liu D, Zhai L, Wang X, Zhang Y, Meng Y, Yokota H, Zhang P. Loading-driven PI3K/Akt signaling and erythropoiesis enhanced angiogenesis and osteogenesis in a postmenopausal osteoporosis mouse model. Bone 2022; 157:116346. [PMID: 35114427 DOI: 10.1016/j.bone.2022.116346] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
Bone vasculature influences osteogenesis and haematopoiesis in the bone microenviroment. Mechanical loading has been shown to stimulate the formation of osteogenesis-related type H vessels in an ovariectomy (OVX)-induced osteoporosis mouse model. To determine the loading-driven mechanism of angiogenesis and the formation of type H vessels in bone, we evaluated the roles of PI3K/Akt signaling and erythropoiesis in the bone marrow. The daily application of mechanical loading (1 N at 5 Hz for 6 min/day) for 2 weeks on OVX mice inhibited osteoclast activity, associated with an increase in the number of osteoblasts and trabecular volume ratio. Mechanical loading enhanced bone vasculature and vessel formation, as well as PI3K/Akt phosphorylation and erythropoiesis in the bone marrow. Notably, LY294002, an inhibitor of PI3K signaling, blocked the tube formation by endothelial progenitor cells, as well as their migration and wound healing. The conditioned medium, derived from erythroblasts, also promoted the function of HUVECs with elevated levels of VEGF, CD31, and Emcn. Collectively, this study demonstrates that mechanical loading prevents osteoporotic bone loss by promoting angiogenesis and type H vessel formation. This load-driven preventing effect is in part mediated by PI3K/Akt signaling and erythropoiesis in the bone marrow.
Collapse
Affiliation(s)
- Abdusami Abdurahman
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xuetong Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yifan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yao Meng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
6
|
Huang Y, Qian JY, Cheng H, Li XM. Effects of shear stress on differentiation of stem cells into endothelial cells. World J Stem Cells 2021; 13:894-913. [PMID: 34367483 PMCID: PMC8316872 DOI: 10.4252/wjsc.v13.i7.894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering. Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes, including endothelial cells (ECs) and smooth muscle cells. The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation. This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs. Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jia-Yi Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hong Cheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao-Ming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
7
|
Shin HY, Fukuda S, Schmid-Schönbein GW. Fluid shear stress-mediated mechanotransduction in circulating leukocytes and its defect in microvascular dysfunction. J Biomech 2021; 120:110394. [PMID: 33784517 DOI: 10.1016/j.jbiomech.2021.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Leukocytes (neutrophils, monocytes) in the active circulation exhibit multiple phenotypic indicators for a low level of cellular activity, like lack of pseudopods and minimal amounts of activated, cell-adhesive integrins on their surfaces. In contrast, before these cells enter the circulation in the bone marrow or when they recross the endothelium into extravascular tissues of peripheral organs they are fully activated. We review here a multifaceted mechanism mediated by fluid shear stress that can serve to deactivate leukocytes in the circulation. The fluid shear stress controls pseudopod formation via the FPR receptor, the same receptor responsible for pseudopod projection by localized actin polymerization. The bioactivity of macromolecular factors in the blood plasma that interfere with receptor stimulation by fluid flow, such as proteolytic cleavage in the extracellular domain of the receptor or the membrane actions of cholesterol, leads to a defective ability to respond to fluid shear stress by actin depolymerization. The cell reaction to fluid shear involves CD18 integrins, nitric oxide, cGMP and Rho GTPases, is attenuated in the presence of inflammatory mediators and modified by glucocorticoids. The mechanism is abolished in disease models (genetic hypertension and hypercholesterolemia) leading to an increased number of activated leukocytes in the circulation with enhanced microvascular resistance and cell entrapment. In addition to their role in binding to biochemical agonists/antagonists, membrane receptors appear to play a second role: to monitor local fluid shear stress levels. The fluid shear stress control of many circulating cell types such as lymphocytes, stem cells, tumor cells remains to be elucidated.
Collapse
Affiliation(s)
- Hainsworth Y Shin
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States; Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories Center for Devices and Radiological Health, The Food & Drive Administration, Silver Spring, MD, United States
| | - Shunichi Fukuda
- Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | |
Collapse
|
8
|
Wang X, Li X, Li J, Zhai L, Liu D, Abdurahman A, Zhang Y, Yokota H, Zhang P. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells. FASEB J 2020; 35:e21150. [PMID: 33161580 DOI: 10.1096/fj.202001080rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
Exosomes are important transporters of miRNAs, which play varying roles in the healing of the bone fracture. Angiogenesis is one of such critical events in bone healing, and we previously reported the stimulatory effect of mechanical loading in vessel remodeling. Focusing on type H vessels and exosomal miR-214-3p, this study examined the mechanism of loading-driven angiogenesis. MiRNA sequencing and qRT-PCR revealed that miR-214-3p was increased in the exosomes of the bone-losing ovariectomized (OVX) mice, while it was significantly decreased by knee loading. Furthermore, compared to the OVX group, exosomes, derived from the loading group, promoted the angiogenesis of endothelial cells. In contrast, exosomes, which were transfected with miR-214-3p, decreased the angiogenic potential. Notably, knee loading significantly improved the microvascular volume, type H vessel formation, and bone mineral density and contents, as well as BV/TV, Tb.Th, Tb.N, and Tb.Sp. In cell cultures, the overexpression of miR-214-3p in endothelial cells reduced the tube formation and cell migration. Collectively, this study demonstrates that knee loading promotes angiogenesis by enhancing the formation of type H vessels and downregulating exosomal miR-214-3p.
Collapse
Affiliation(s)
- Xuetong Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Abdusami Abdurahman
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yifan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Liu W, Harman S, DiLuca M, Burtenshaw D, Corcoran E, Cahill PA, Redmond EM. Moderate Alcohol Consumption Targets S100β + Vascular Stem Cells and Attenuates Injury-Induced Neointimal Hyperplasia. Alcohol Clin Exp Res 2020; 44:1734-1746. [PMID: 32671866 DOI: 10.1111/acer.14415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Stem cells present in the vessel wall may be triggered in response to injurious stimuli to undergo differentiation and contribute to vascular disease development. Our aim was to determine the effect of moderate alcohol (EtOH) exposure on the expansion and differentiation of S100 calcium-binding protein B positive (S100β+ ) resident vascular stem cells and their contribution to pathologic vessel remodeling in a mouse model of arteriosclerosis. METHODS AND RESULTS Lineage tracing analysis of S100β+ cells was performed in male and female S100β-eGFP/Cre/ERT2-dTomato transgenic mice treated daily with or without EtOH by oral gavage (peak BAC: 15 mM or 0.07%) following left common carotid artery ligation for 14 days. Carotid arteries (ligated or sham-operated) were harvested for morphological analysis and confocal assessment of fluorescent-tagged S100 β + cells in FFPE carotid cross sections. Ligation-induced carotid remodeling was more robust in males than in females. EtOH-gavaged mice had less adventitial thickening and markedly reduced neointimal formation compared to controls, with a more pronounced inhibitory effect in males compared to females. There was significant expansion of S100β+ -marked cells in vessels postligation, primarily in the neointimal compartment. EtOH treatment reduced the fraction of S100β+ cells in carotid cross sections, concomitant with attenuated remodeling. In vitro, EtOH attenuated Sonic Hedgehog-stimulated myogenic differentiation (as evidenced by reduced calponin and myosin heavy chain expression) of isolated murine S100β+ vascular stem cells. CONCLUSIONS These data highlight resident vascular S100β+ stem cells as a novel target population for alcohol and suggest that regulation of these progenitors in adult arteries, particularly in males, may be an important mechanism contributing to the antiatherogenic effects of moderate alcohol consumption.
Collapse
Affiliation(s)
- Weimin Liu
- From the Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Suzie Harman
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Mariana DiLuca
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Denise Burtenshaw
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Eoin Corcoran
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- From the Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|