1
|
Ribeiro M. Advances in Cell-based therapies for peripheral arterial disease. Tissue Cell 2025; 95:102909. [PMID: 40250109 DOI: 10.1016/j.tice.2025.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
PURPOSE To examine recent advances in cell-based therapies for peripheral arterial disease (PAD), focusing on mechanisms of action, clinical applications, and regulatory considerations. The review aimed to evaluate the therapeutic potential of various cell types and assess their efficacy in addressing the unmet needs of PAD patients,particularly those with critical limb ischemia (CLI). METHODS The review analysed current literature on cell-based therapies for PAD, including preclinical studies using animal models, clinical trials from phase I to III, and regulatory frameworks. Multiple cell types were evaluated, including mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), bone marrow mononuclear cells (BMMNCs),and adipose-derived stem cells (ADSCs). RESULTS Preclinical studies demonstrated significant improvements in limb perfusion and neovascularization across various cell types. Clinical trials, particularly those utilizing MSCs and BM-MNCs, showed encouraging outcomes in wound healing and reduced amputation rates. The therapeutic effects were mediated through multiple mechanisms, including direct vessel formation, paracrine signalling, immunomodulation, and tissue repair. The FDA's implementation of a tiered, risk-based system for human cells, tissues, and cellular and tissue-based products (HCT/Ps) has provided a regulatory framework balancing innovation with safety. CONCLUSION Cell-based therapies show promising potential for PAD treatment, particularly for patients with limited conventional treatment options. While clinical trials demonstrate encouraging results, challenges remain in standardizing cell characterization methods and establishing appropriate potency assays. Future research should focus on optimizing cell delivery methods, identifying the most effective cell types, and conducting larger clinical trials to establish definitive efficacy.
Collapse
Affiliation(s)
- Maisa Ribeiro
- Medical College, Health Sciences Academic Unit, University Center of Mineiros, Mineiros, Goias, Brazil.
| |
Collapse
|
2
|
Zubair M, Abouelnazar FA, Iqbal MA, Pan J, Zheng X, Chen T, Shen W, Yin J, Yan Y, Liu P, Mao F, Chu Y. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front Cell Dev Biol 2025; 13:1563427. [PMID: 40129569 PMCID: PMC11931156 DOI: 10.3389/fcell.2025.1563427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially, exosomes are considered to have diverse therapeutic effects for various significant diseases. MSC-derived exosomes (MSCex) offer substantial advantages over MSCs due to their long-term preservation, stability, absence of nuclei and fewer adverse effects such as infusion toxicity, thereby paving the way towards regenerative medicine and cell-free therapeutics. These exosomes harbor several cellular contents such as DNA, RNA, lipids, metabolites, and proteins, facilitating drug delivery and intercellular communication. MSCex have the ability to immunomodulate and trigger the anti-inflammatory process hence, playing a key role in alleviating inflammation and enhancing tissue regeneration. In this review, we addressed the anti-inflammatory effects of MSCex and the underlying immunomodulatory pathways. Moreover, we discussed the recent updates on MSCex in treating specific inflammatory diseases, including arthritis, inflammatory bowel disease, inflammatory eye diseases, and respiratory diseases such as asthma and acute respiratory distress syndrome (ARDS), as well as neurodegenerative and cardiac diseases. Finally, we highlighted the challenges in using MSCex as the successful therapeutic tool and discussed future perspectives.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | | | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Wenming Shen
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Jinnan Yin
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Okuyan HM, Coşkun A, Begen MA. Current status, opportunities, and challenges of exosomes in diagnosis and treatment of osteoarthritis. Life Sci 2025; 362:123365. [PMID: 39761740 DOI: 10.1016/j.lfs.2024.123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/22/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
Osteoarthritis (OA) is a progressive joint disease that is a frequent reason for pain and physical dysfunction in adults, with enormous social and economic burden. Although ongoing scientific efforts in recent years have made considerable progress towards understanding of the disease's molecular mechanism, the pathogenesis of OA is still not fully known, and its clinical challenge remains. Thus, elucidating molecular events underlying the initiation and progression of OA is crucial for developing novel diagnostic and therapeutic approaches that could facilitate effective clinical management of the illness. Exosomes, extracellular vesicles containing various cellular components with approximately a diameter of 100 nm, act as essential mediators in physiological and pathological processes by modulating cell-to-cell communications. Exosomes have crucial roles in biological events such as intercellular communication, regulation of gene expression, apoptosis, inflammation, immunity, maturation and differentiation due to their inner composition, which includes nucleic acids, proteins, and lipids. We focus on the roles of exosomes in OA pathogenesis and discuss how they might be used in clinical practice for OA diagnosis and treatment. Our paper not only provides a comprehensive review of exosomes in OA but also contributes to the development efforts of diagnostic and therapeutic tools for OA.
Collapse
Affiliation(s)
- Hamza Malik Okuyan
- Department of Physiotherapy and Rehabilitation - Faculty of Health Sciences, Biomedical Technologies Application and Research Center, Physiotherapy and Rehabilitation Application and Research Center, Sakarya University of Applied Sciences, Sakarya, Türkiye.
| | - Ayça Coşkun
- Department of Physiotherapy and Rehabilitation - Faculty of Health Sciences, Physiotherapy and Rehabilitation Application and Research Center, Sakarya University of Applied Sciences, Sakarya, Türkiye
| | - Mehmet A Begen
- Department of Epidemiology and Biostatistics-Schulich School of Medicine and Dentistry, Ivey Business School, University of Western Ontario, London, ON, Canada
| |
Collapse
|
4
|
Pei H, Zhang Y, Wang C, He BJ. Additional comments on extracellular vesicles derived from mesenchymal stem cells mediate extracellular matrix remodeling in osteoarthritis. World J Stem Cells 2024; 16:739-741. [PMID: 39086559 PMCID: PMC11287428 DOI: 10.4252/wjsc.v16.i7.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Recently, we read an article published by the Yang et al. The results of this study indicated that engineered exosomes loaded with microRNA-29a (miR-29a) alleviate knee inflammation and maintain extracellular matrix stability in Sprague Dawley rats. The study's results provide useful information for treating knee osteoarthritis (KOA). This letter, shares our perspectives on treating KOA using engineered exosomes for miR-29a.
Collapse
Affiliation(s)
- Hang Pei
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Yi Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Chao Wang
- Department of Orthopaedics, Anji County Hospital of Chinese Medicine, Anji 313300, Zhejiang Province, China
| | - Bang-Jian He
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China.
| |
Collapse
|
5
|
Campbell TM. CORR Insights®: Human Infrapatellar Fat Pad Mesenchymal Stem Cell-derived Extracellular Vesicles Purified by Anion Exchange Chromatography Suppress Osteoarthritis Progression in a Mouse Model. Clin Orthop Relat Res 2024; 482:1263-1266. [PMID: 38843517 PMCID: PMC11219161 DOI: 10.1097/corr.0000000000003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 07/04/2024]
Affiliation(s)
- T Mark Campbell
- Clinician Investigator, Physical Medicine and Rehabilitation Department, Élisabeth Bruyère Hospital, Ottawa, Ontario, Canada
| |
Collapse
|