1
|
Mohammed MA, Hay NHA, Mohammed MT, Mahmoud HS, Ahmed MY, Abdelmenem A, Abdelrahim DS. The effect of adipose-derived mesenchymal stem cells against high fructose diet induced liver dysfunction and dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4525-4537. [PMID: 39500806 PMCID: PMC11978704 DOI: 10.1007/s00210-024-03518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/05/2024] [Indexed: 04/10/2025]
Abstract
High fructose diet (HFrD) has been approved to be involved in the pathogenesis of insulin resistance. Mesenchymal stem cells have a vital role in the treatment of various diseases including metabolic disturbances. We investigated the effect of Adipose-derived mesenchymal stem cells (ADMSCs) against HFrD-induced metabolic disorders and the molecular mechanisms for this effect. Rats were divided into 3 groups; control, HFrD, and combined HFrD with ADMSCs. We assessed liver functions, gut microbiota activity, oxidative stress, adiponectin, and IL10 levels. Also, we measured SREBP-1, IRS-1 expression using Western blot, and Malat1 expression using rt-PCR. ADMSCs antagonized metabolic abnormalities induced by HFrD in the form of improvement of liver functions and alleviation of oxidative stress. In addition, ADMSCs ameliorated gut microbiota activity besides the elevation of adiponectin and IL10 levels. ADMSCs attenuated insulin resistance through upregulation of IRS1 and downregulation of SREBP-1 and Malat1. ADMSCs can protect against HFrD-induced metabolic hazards.
Collapse
Affiliation(s)
| | - Nesma Hussein Abel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha Tarek Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hoda Sayed Mahmoud
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Manar Yehia Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Abdelmenem
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Dina Sayed Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
2
|
Xing Y, Ma C, Guan H, Shen J, Shen Y, Li G, Sun G, Tian Y, Kang X, Liu X, Li H, Tian W. Multi-Omics Insights into Regulatory Mechanisms Underlying Differential Deposition of Intramuscular and Abdominal Fat in Chickens. Biomolecules 2025; 15:134. [PMID: 39858528 PMCID: PMC11763713 DOI: 10.3390/biom15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Excessive abdominal fat deposition in chickens disadvantages feed conversion, meat production, and reproductive performance. Intramuscular fat contributes to meat texture, tenderness, and flavor, serving as a vital indicator of overall meat quality. Therefore, a comprehensive analysis of the regulatory mechanisms governing differential deposition of abdominal versus intramuscular fat is essential in breeding higher-quality chickens with ideal fat distribution. This review systematically summarizes the regulatory mechanisms underlying intramuscular and abdominal fat traits at chromatin, genomic, transcriptional, post-transcriptional, translational, and epigenetic-modification scales. Additionally, we summarize the role of non-coding RNAs and protein-coding genes in governing intramuscular and abdominal fat deposition. These insights provide a valuable theoretical foundation for the genetic engineering of high-quality and high-yielding chicken breeds.
Collapse
Affiliation(s)
- Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Jianing Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Ying Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| |
Collapse
|
3
|
Coccè V, Missaglia S, Martegani E, Tavian D, Doneda L, Manfredi B, Alessandri G, Corradini C, Giannì A, Ciusani E, Paino F, Pessina A. Early Adipogenesis and Upregulation of UCP1 in Mesenchymal Stromal Cells Stimulated by Devitalized Microfragmented Fat (MiFAT). J Lipids 2024; 2024:1318186. [PMID: 39297160 PMCID: PMC11410402 DOI: 10.1155/2024/1318186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/21/2024] Open
Abstract
Adipose tissue is mainly composed by adipocytes. Moreover, mesenchymal stromal/stem cells (MSCs), macrophages, endothelial cells, and extracellular matrix components are present. The variety of molecules as cytokines and growth factors of its structure very rich in blood vessel makes it also similar to a true endocrine organ that however needs still to be fully investigated. In our study, we used human lipoaspirate to obtain mechanically microfragmented fat (MiFAT) which was washed and then devitalized by freezing-thawing cycles. In our experiments, thawed MiFAT was used to stimulate cultures of MSCs from two different sources (adipose tissue and gingiva papilla) in comparison with a traditional stimulation in vitro obtained by culturing MSCs with adipogenic medium. MSCs stimulated with MiFAT showed a very early production of lipid droplets, after only 3 days, that correlated with an increased expression of adipokines. Furthermore, a significant upregulation of PPAR gamma 1 alpha coactivator (PPARGC1A) was observed with an overexpression of uncoupling protein 1 (UCP1) that suggest a pattern of differentiation compatible with the beige-brown fat.
Collapse
Affiliation(s)
- Valentina Coccè
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology CRIBENS Università Cattolica del Sacro Cuore, Milan, Italy
- Department of Psychology Università Cattolica del Sacro Cuore, Milan, Italy
| | - Eleonora Martegani
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology CRIBENS Università Cattolica del Sacro Cuore, Milan, Italy
- Department of Psychology Università Cattolica del Sacro Cuore, Milan, Italy
| | - Luisa Doneda
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Barbara Manfredi
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Giulio Alessandri
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Costantino Corradini
- Department of Biomedical Surgical and Dental Sciences Sports Trauma Researches Center University of Milan c/o 1st Division of Orthopedics and Traumatology Orthopedic Center Pini CTO-ASST Gaetano Pini, Milan, Italy
| | - Aldo Giannì
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
- Maxillo-Facial and Dental Unit Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico 20122, Milan, Italy
| | - Emilio Ciusani
- Department of Diagnostics and Technology Fondazione IRCCS Istituto Neurologico "C.Besta", Milano, Italy
| | - Francesca Paino
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Augusto Pessina
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| |
Collapse
|
4
|
Chen H, Sun B, Chang SJ, Yu Z, Qiu Y, Hua C, Lin X. Single-cell sequencing of facial adipose tissue unveils FKBP5 as a therapeutic target for facial infiltrating lipomatosis. Stem Cell Res Ther 2024; 15:209. [PMID: 39020442 PMCID: PMC11256636 DOI: 10.1186/s13287-024-03835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Facial infiltrating lipomatosis is characterized by excessive growth of adipose tissue. Its etiology is associated with somatic phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) variants, but the specific mechanisms are not yet fully understood. METHODS We collected facial adipose tissue from both FIL patients and non-FIL individuals, isolated the stromal vascular fraction (SVF) and performed single-cell transcriptome sequencing on these samples. RESULTS We mapped out the cellular landscape within the SVF, with a specific focus on a deeper analysis of fibro-adipogenic precursor cells (FAPs). Our analysis revealed that FAPs from FIL patients (FIL-FAPs) significantly overexpressed FK506 binding protein 51 (FKBP5) compared to FAPs from individuals without FIL. Further experiments indicated that FKBP5 is regulated by the PI3K-AKT signaling pathway. The overactivation of this pathway led to an increase in FKBP5 expression. In vitro experiments demonstrated that FKBP5 promoted adipogenic differentiation of FAPs, a process that could be hindered by FKBP5 knockdown or inhibition. Additionally, in vivo assessments confirmed FKBP5's role in adipogenesis. CONCLUSIONS These insights into the pathogenesis of FIL underscore FKBP5 as a promising target for developing non-surgical interventions to manage the excessive adipose tissue growth in FIL.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Shih-Jen Chang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Zhang Yu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Yajing Qiu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| |
Collapse
|