1
|
Sala C, Ninu A, Balducci V, Allegro G, Montalbano A, Lulli M, Boccitto ML, Guzzolino E, Spinelli V, Arcangeli A, Sartiani L, Cerbai E. Stable expression of SARS-CoV-2 envelope viroporin promotes intracellular calcium depletion in human cells: relevance for endoplasmic reticulum stress, cell proliferation, pluripotency and lineage differentiation. Cell Calcium 2025; 128:103032. [PMID: 40286431 DOI: 10.1016/j.ceca.2025.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
SARS-CoV-2 infection affects the respiratory system but also many tissues and organs that may be adversely compromised. Accordingly, recent evidence has assessed virus ability to infect different cell phenotypes, translate viral proteins and promote virus replication. Among them, Envelope (E) proteins sustain virus replication, promote inflammatory processes and remodelling of host cells. However, despite advances on structure and sequence, E-protein specific location and effects in human host cells are still controversial and poorly investigated. Using lentiviral vectors, we established HEK293 and hiPS cell lines stably expressing E-protein. Immunocytochemistry showed E-protein mainly locates within the endoplasmic reticulum, the ERGIC and the Golgi compartments, while only HEK293 cells display some protein staining in cell periphery suggesting a possible insertion into the plasmalemma. Electrophysiological recordings in HEK293 cells revealed E-protein self-assembles in the plasma membrane to mediate a cation efflux pore that is sensitive to amantadine blockade. Calcium fluorescence imaging in HEK293 and hiPS cells demonstrated E-protein expression induces a marked depletion of thapsigargin-sensitive intracellular calcium stores. The altered calcium homeostasis associates to reduced cell metabolic activity, mitochondrial potential, proliferation rate and promotes ER stress. Finally, trilineage differentiation of hiPS cells indicated E-protein expression preserves cell pluripotency while selectively impairs mesodermal differentiation. These results unveil a critical role of stable E-viroporin expression that through alteration of ER Ca²⁺ homeostasis, metabolic activity and induction of ER stress affects important cellular functions, including the differentiative process from pluripotent to mesodermal progenitors, a critical cell population in self-repair and homeostasis of most human tissue and organs.
Collapse
Affiliation(s)
- Cesare Sala
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Ninu
- Department of Neurofarba, University of Florence, Florence, Italy
| | | | - Giada Allegro
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Alberto Montalbano
- G.E.A. Green Economy and Agriculture Centro per la Ricerca s.r.l, Pistoia, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Elena Guzzolino
- Department of Neurofarba, University of Florence, Florence, Italy
| | | | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Sartiani
- Department of Neurofarba, University of Florence, Florence, Italy.
| | | |
Collapse
|
2
|
Spinelli V, Laurino A, Balducci V, Gencarelli M, Ruzzolini J, Nediani C, Mandoli GE, Cameli M, Sacconi L, Sartiani L, Cerbai E. Interleukin-6 Modulates the Expression and Function of HCN Channels: A Link Between Inflammation and Atrial Electrogenesis. Int J Mol Sci 2024; 25:12212. [PMID: 39596280 PMCID: PMC11594737 DOI: 10.3390/ijms252212212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory cytokines, including interleukin 6 (IL6), are associated with ion channel remodeling and enhance the propensity to alterations in cardiac rhythm generation and propagation, in which the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a crucial role. Hence, we investigated the consequences of exposure to IL6 on HCN channels in cell models and human atrial biopsies. In murine atrial HL1 cells and in cardiomyocytes derived from human induced pluripotent stem cells (hiPS-CMs), IL6 elicited STAT3 phosphorylation, a receptor-mediated downstream signaling. Downregulation of HCN1,2,4 by IL6 was observed after 24-48 h; in hiPS-CMs, this effect was reverted by 24 h of application of tocilizumab, a human IL6 receptor antagonist. In parallel, hiPS-CM action potentials (APs) showed a reduced spontaneous frequency. Moreover, we assessed IL6 and HCN expression in dilated left atrial samples from patients with mitral valve disease, an AF-prone condition. IL6 levels were increased in dilated atria compared to controls and positively correlated with echocardiographic atrial dimensions. Interestingly, the highest IL6 transcript levels and the lowest HCN4 and HCN2 expression were in these samples. In conclusion, our data uncovered a novel link between IL6 and cardiac HCN channels, potentially contributing to atrial electrical disturbances and a higher risk of dysrhythmias in conditions with elevated IL6 levels.
Collapse
Affiliation(s)
- Valentina Spinelli
- Department of Neuroscience, Innovative Treatment, Drug Research and Child Health, University of Firenze, 50139 Firenze, Italy; (V.S.); (A.L.); (V.B.); (M.G.); (J.R.)
| | - Annunziatina Laurino
- Department of Neuroscience, Innovative Treatment, Drug Research and Child Health, University of Firenze, 50139 Firenze, Italy; (V.S.); (A.L.); (V.B.); (M.G.); (J.R.)
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Valentina Balducci
- Department of Neuroscience, Innovative Treatment, Drug Research and Child Health, University of Firenze, 50139 Firenze, Italy; (V.S.); (A.L.); (V.B.); (M.G.); (J.R.)
| | - Manuela Gencarelli
- Department of Neuroscience, Innovative Treatment, Drug Research and Child Health, University of Firenze, 50139 Firenze, Italy; (V.S.); (A.L.); (V.B.); (M.G.); (J.R.)
- Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, NY 10024, USA
| | - Jessica Ruzzolini
- Department of Neuroscience, Innovative Treatment, Drug Research and Child Health, University of Firenze, 50139 Firenze, Italy; (V.S.); (A.L.); (V.B.); (M.G.); (J.R.)
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, 50139 Firenze, Italy;
| | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (G.E.M.); (M.C.)
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (G.E.M.); (M.C.)
| | - Leonardo Sacconi
- Institute of Clinical Physiology, National Research Council, 50139 Florence, Italy;
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, 79110 Freiburg, Germany
| | - Laura Sartiani
- Department of Neuroscience, Innovative Treatment, Drug Research and Child Health, University of Firenze, 50139 Firenze, Italy; (V.S.); (A.L.); (V.B.); (M.G.); (J.R.)
| | - Elisabetta Cerbai
- Department of Neuroscience, Innovative Treatment, Drug Research and Child Health, University of Firenze, 50139 Firenze, Italy; (V.S.); (A.L.); (V.B.); (M.G.); (J.R.)
- European Laboratory for Non-Linear Spectroscopy-LENS, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
3
|
Gu CC, Matter A, Turner A, Aggarwal P, Yang W, Sun X, Hunt SC, Lewis CE, Arnett DK, Anson B, Kattman S, Broeckel U. Transcriptional Variabilities in Human hiPSC-derived Cardiomyocytes: All Genes Are Not Equal and Their Robustness May Foretell Donor's Disease Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.584138. [PMID: 38659937 PMCID: PMC11042381 DOI: 10.1101/2024.04.18.584138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) are frequently used to study disease-associated variations. We characterized transcriptional variability from a hiPSC-derived cardiomyocyte (hiPSC-CM) study of left ventricular hypertrophy (LVH) using donor samples from the HyperGEN study. Multiple hiPSC-CM differentiations over reprogramming events (iPSC generation) across 7 donors were used to assess variabilities from reprogramming, differentiation, and donor LVH status. Variability arising from pathological alterations was assessed using a cardiac stimulant applied to the hiPSC-CMs to trigger hypertrophic responses. We found that for most genes (73.3%~85.5%), technical variability was smaller than biological variability. Further, we identified and characterized lists of "noise" genes showing greater technical variability and "signal" genes showing greater biological variability. Together, they support a "genetic robustness" hypothesis of disease-modeling whereby cellular response to relevant stimuli in hiPSC-derived somatic cells from diseased donors tends to show more transcriptional variability. Our findings suggest that hiPSC-CMs can provide a valid model for cardiac hypertrophy and distinguish between technical and disease-relevant transcriptional changes.
Collapse
|
4
|
Muacevic A, Adler JR, Ajmal M, Nawaz G. Organ Regeneration Through Stem Cells and Tissue Engineering. Cureus 2023; 15:e34336. [PMID: 36865965 PMCID: PMC9973391 DOI: 10.7759/cureus.34336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2023] [Indexed: 01/30/2023] Open
Abstract
Loss of organ and tissue due to injuries or diseases led to the development of regenerative therapies to decrease reliance on organ transplantations. It deals with employing the self-renewal ability of stem cells to differentiate into numerous lineages to assist in providing effective treatment for a range of various injuries and diseases. Regenerative engineering of organs or tissues represents an ever-expanding field that is aimed at developing biological replacements for dysfunctional organs or injured tissues. The critical issue, however, with the engineering of organs outside the human body is the insufficient availability of human cells, the absence of a suitable matrix with the same architecture and composition as the target tissue, and the maintenance of organ viability in the absence of the blood supply. The issue regarding the maintenance of the engineered organ viability can be solved using bioreactors consisting of mediums with defined chemical composition, i.e., nutrients, cofactors, and growth factors that can successively sustain the target cell's viability. Engineered extracellular matrices and stem cells to regenerate organs outside the human body are also being used. Clinically, various adult stem cell therapies are readily under practice. This review will focus on the regeneration of organs through various types of stem cells and tissue engineering techniques.
Collapse
|
5
|
Kałużna E, Nadel A, Zimna A, Rozwadowska N, Kolanowski T. Modeling the human heart ex vivo-current possibilities and strive for future applications. J Tissue Eng Regen Med 2022; 16:853-874. [PMID: 35748158 PMCID: PMC9796015 DOI: 10.1002/term.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/20/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The high organ specification of the human heart is inversely proportional to its functional recovery after damage. The discovery of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has accelerated research in human heart regeneration and physiology. Nevertheless, due to the immaturity of iPSC-CMs, they are far from being an representative model of the adult heart physiology. Therefore, number of laboratories strive to obtain a heart tissues by engineering methods by structuring iPSC-CMs into complex and advanced platforms. By using the iPSC-CMs and arranging them in 3D cultures it is possible to obtain a human heart muscle with physiological capabilities potentially similar to the adult heart, while remaining in vitro. Here, we attempt to describe existing examples of heart muscle either in vitro or ex vivo models and discuss potential options for the further development of such structures. This will be a crucial step for ultimate derivation of complete heart tissue-mimicking organs and their future use in drug development, therapeutic approaches testing, pre-clinical studies, and clinical applications. This review particularly aims to compile available models of advanced human heart tissue for scientists considering which model would best fit their research needs.
Collapse
Affiliation(s)
- Ewelina Kałużna
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | - Agnieszka Nadel
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | - Agnieszka Zimna
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | | | | |
Collapse
|
6
|
Mousavi A, Stefanek E, Jafari A, Ajji Z, Naghieh S, Akbari M, Savoji H. Tissue-engineered heart chambers as a platform technology for drug discovery and disease modeling. BIOMATERIALS ADVANCES 2022; 138:212916. [PMID: 35913255 DOI: 10.1016/j.bioadv.2022.212916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Current drug screening approaches are incapable of fully detecting and characterizing drug effectiveness and toxicity of human cardiomyocytes. The pharmaceutical industry uses mathematical models, cell lines, and in vivo models. Many promising drugs are abandoned early in development, and some cardiotoxic drugs reach humans leading to drug recalls. Therefore, there is an unmet need to have more reliable and predictive tools for drug discovery and screening applications. Biofabrication of functional cardiac tissues holds great promise for developing a faithful 3D in vitro disease model, optimizing drug screening efficiencies enabling precision medicine. Different fabrication techniques including molding, pull spinning and 3D bioprinting were used to develop tissue-engineered heart chambers. The big challenge is to effectively organize cells into tissue with structural and physiological features resembling native tissues. Some advancements have been made in engineering miniaturized heart chambers that resemble a living pump for drug screening and disease modeling applications. Here, we review the currently developed tissue-engineered heart chambers and discuss challenges and prospects.
Collapse
Affiliation(s)
- Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Evan Stefanek
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Arman Jafari
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Zineb Ajji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada; Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5 Canada; Montreal TransMedTech Institute (iTMT), Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
7
|
Credi C, Balducci V, Munagala U, Cianca C, Bigiarini S, de Vries AAF, Loew LM, Pavone FS, Cerbai E, Sartiani L, Sacconi L. Fast Optical Investigation of Cardiac Electrophysiology by Parallel Detection in Multiwell Plates. Front Physiol 2021; 12:692496. [PMID: 34539428 PMCID: PMC8446431 DOI: 10.3389/fphys.2021.692496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Current techniques for fast characterization of cardiac electrophysiology employ optical technologies to control and monitor action potential features of single cells or cellular monolayers placed in multiwell plates. High-speed investigation capacities are commonly achieved by serially analyzing well after well employing fully automated fluorescence microscopes. Here, we describe an alternative cost-effective optical approach (MULTIPLE) that exploits high-power LED arrays to globally illuminate a culture plate and an sCMOS sensor for parallel detection of the fluorescence coming from multiple wells. MULTIPLE combines optical detection of action potentials using a red-shifted voltage-sensitive fluorescent dye (di-4-ANBDQPQ) with optical stimulation, employing optogenetic actuators, to ensure excitation of cardiomyocytes at constant rates. MULTIPLE was first characterized in terms of interwell uniformity of the illumination intensity and optical detection performance. Then, it was applied for probing action potential features in HL-1 cells (i.e., mouse atrial myocyte-like cells) stably expressing the blue light-activatable cation channel CheRiff. Under proper stimulation conditions, we were able to accurately measure action potential dynamics across a 24-well plate with variability across the whole plate of the order of 10%. The capability of MULTIPLE to detect action potential changes across a 24-well plate was demonstrated employing the selective K v 11.1 channel blocker (E-4031), in a dose titration experiment. Finally, action potential recordings were performed in spontaneous beating human induced pluripotent stem cell derived cardiomyocytes following pharmacological manipulation of their beating frequency. We believe that the simplicity of the presented optical scheme represents a valid complement to sophisticated and expensive state-of-the-art optical systems for high-throughput cardiac electrophysiological investigations.
Collapse
Affiliation(s)
- Caterina Credi
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Florence, Italy
| | - Valentina Balducci
- Department of Neurosciences, Psychology, Drugs and Child Health, University of Florence, Florence, Italy
| | - U Munagala
- Department of Neurosciences, Psychology, Drugs and Child Health, University of Florence, Florence, Italy.,Core Research Laboratory, ISPRO, Florence, Italy
| | - C Cianca
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy
| | - S Bigiarini
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Francesco S Pavone
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Florence, Italy.,Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Elisabetta Cerbai
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Neurosciences, Psychology, Drugs and Child Health, University of Florence, Florence, Italy
| | - Laura Sartiani
- Department of Neurosciences, Psychology, Drugs and Child Health, University of Florence, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Florence, Italy
| |
Collapse
|
8
|
Cetin Y, Sahin MG, Kok FN. Application potential of three-dimensional silk fibroin scaffold using mesenchymal stem cells for cardiac regeneration. J Biomater Appl 2021; 36:740-753. [PMID: 34039082 DOI: 10.1177/08853282211018529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiac tissue engineering focusing on biomaterial scaffolds incorporating cells from different sources has been explored to regenerate or repair damaged area as a lifesaving approach.The aim of this study was to evaluate the cardiomyocyte differentiation potential of human adipose mesenchymal stem cells (hAD-MSCs) as an alternative cell source on silk fibroin (SF) scaffolds for cardiac tissue engineering. The change in surface morphology of SF scaffolds depending on SF concentration (1-6%, w/v) and increase in their porosity upon application of unidirectional freezing were visualized by scanning electron microscopy (SEM). Swelling ratio was found to increase 2.4 fold when SF amount was decreased from 4% to 2%. To avoid excessive swelling, 4% SF scaffold with swelling ratio of 10% (w/w) was chosen for further studies.Biodegradation rate of SF scaffolds depended on enzymatic activity was found to be 75% weight loss of SF scaffolds at the day 14. The phenotype of hAD-MSCs and their multi-linage potential into chondrocytes, osteocytes, and adipocytes were shown by flow cytometry and immunohistochemical staining, respectively.The viability of hAD-MSCs on 3D SF scaffolds was determined as 90%, 118%, and 138% after 1, 7, and 14 days, respectively. The use of 3D SF scaffolds was associated with increased production of cardiomyogenic biomarkers: α-actinin, troponin I, connexin 43, and myosin heavy chain. The fabricated 3D SF scaffolds were proved to sustain hAD-MSCs proliferation and cardiomyogenic differentiation therefore, hAD-MSCs on 3D SF scaffolds may useful tool to regenerate or repair damaged area using cardiac tissue engineering techniques.
Collapse
Affiliation(s)
- Yuksel Cetin
- TUBITAK, Marmara Research Center, Genetic Engineering and Biotechnology Institute, Kocaeli, Turkey
| | - Merve G Sahin
- Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program - Ayazaga Campus, Istanbul, Turkey
| | - Fatma N Kok
- Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program - Ayazaga Campus, Istanbul, Turkey
| |
Collapse
|
9
|
Design and fabrication of an integrated heart-on-a-chip platform for construction of cardiac tissue from human iPSC-derived cardiomyocytes and in situ evaluation of physiological function. Biosens Bioelectron 2021; 179:113080. [DOI: 10.1016/j.bios.2021.113080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 11/21/2022]
|
10
|
Huang J, Feng Q, Wang L, Zhou B. Human Pluripotent Stem Cell-Derived Cardiac Cells: Application in Disease Modeling, Cell Therapy, and Drug Discovery. Front Cell Dev Biol 2021; 9:655161. [PMID: 33869218 PMCID: PMC8049435 DOI: 10.3389/fcell.2021.655161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac diseases are the leading cause of deaths worldwide; however, to date, there has been limited progress in the development of therapeutic options for these conditions. Animal models have been the most extensively studied methods to recapitulate a wide variety of cardiac diseases, but these models exhibit species-specific differences in physiology, metabolism and genetics, which lead to inaccurate and unpredictable drug safety and efficacy results, resulting in drug attrition. The development of human pluripotent stem cell (hPSC) technology in theory guarantees an unlimited source of human cardiac cells. These hPSC-derived cells are not only well suited for traditional two-dimensional (2-D) monoculture, but also applicable to more complex systems, such as three-dimensional (3-D) organoids, tissue engineering and heart on-a-chip. In this review, we discuss the application of hPSCs in heart disease modeling, cell therapy, and next-generation drug discovery. While the hPSC-related technologies still require optimization, their advances hold promise for revolutionizing cell-based therapies and drug discovery.
Collapse
Affiliation(s)
- Juan Huang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Amuzescu B, Airini R, Epureanu FB, Mann SA, Knott T, Radu BM. Evolution of mathematical models of cardiomyocyte electrophysiology. Math Biosci 2021; 334:108567. [PMID: 33607174 DOI: 10.1016/j.mbs.2021.108567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Advanced computational techniques and mathematical modeling have become more and more important to the study of cardiac electrophysiology. In this review, we provide a brief history of the evolution of cardiomyocyte electrophysiology models and highlight some of the most important ones that had a major impact on our understanding of the electrical activity of the myocardium and associated transmembrane ion fluxes in normal and pathological states. We also present the use of these models in the study of various arrhythmogenesis mechanisms, particularly the integration of experimental pharmacology data into advanced humanized models for in silico proarrhythmogenic risk prediction as an essential component of the Comprehensive in vitro Proarrhythmia Assay (CiPA) drug safety paradigm.
Collapse
Affiliation(s)
- Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Razvan Airini
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Florin Bogdan Epureanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Stefan A Mann
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Thomas Knott
- CytoBioScience Inc., 3463 Magic Drive, San Antonio, TX 78229, USA
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| |
Collapse
|
12
|
Benzoni P, Campostrini G, Landi S, Bertini V, Marchina E, Iascone M, Ahlberg G, Olesen MS, Crescini E, Mora C, Bisleri G, Muneretto C, Ronca R, Presta M, Poliani PL, Piovani G, Verardi R, Di Pasquale E, Consiglio A, Raya A, Torre E, Lodrini AM, Milanesi R, Rocchetti M, Baruscotti M, DiFrancesco D, Memo M, Barbuti A, Dell'Era P. Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovasc Res 2021; 116:1147-1160. [PMID: 31504264 PMCID: PMC7177512 DOI: 10.1093/cvr/cvz217] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common type of cardiac arrhythmias, whose incidence is likely to increase with the aging of the population. It is considered a progressive condition, frequently observed as a complication of other cardiovascular disorders. However, recent genetic studies revealed the presence of several mutations and variants linked to AF, findings that define AF as a multifactorial disease. Due to the complex genetics and paucity of models, molecular mechanisms underlying the initiation of AF are still poorly understood. Here we investigate the pathophysiological mechanisms of a familial form of AF, with particular attention to the identification of putative triggering cellular mechanisms, using patient's derived cardiomyocytes (CMs) differentiated from induced pluripotent stem cells (iPSCs). METHODS AND RESULTS Here we report the clinical case of three siblings with untreatable persistent AF whose whole-exome sequence analysis revealed several mutated genes. To understand the pathophysiology of this multifactorial form of AF we generated three iPSC clones from two of these patients and differentiated these cells towards the cardiac lineage. Electrophysiological characterization of patient-derived CMs (AF-CMs) revealed that they have higher beating rates compared to control (CTRL)-CMs. The analysis showed an increased contribution of the If and ICaL currents. No differences were observed in the repolarizing current IKr and in the sarcoplasmic reticulum calcium handling. Paced AF-CMs presented significantly prolonged action potentials and, under stressful conditions, generated both delayed after-depolarizations of bigger amplitude and more ectopic beats than CTRL cells. CONCLUSIONS Our results demonstrate that the common genetic background of the patients induces functional alterations of If and ICaL currents leading to a cardiac substrate more prone to develop arrhythmias under demanding conditions. To our knowledge this is the first report that, using patient-derived CMs differentiated from iPSC, suggests a plausible cellular mechanism underlying this complex familial form of AF.
Collapse
Affiliation(s)
- Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Giulia Campostrini
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Sara Landi
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Valeria Bertini
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Maria Iascone
- USSD Laboratorio di Genetica Medica, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Piazza OMS, 1, 24127 Bergamo, Italy
| | - Gustav Ahlberg
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Morten Salling Olesen
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Elisabetta Crescini
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Cristina Mora
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Gianluigi Bisleri
- Department of Surgery, Division of Cardiac Surgery, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Claudio Muneretto
- Clinical Department of Cardiovascular Surgery, University of Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Pier Luigi Poliani
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Piovani
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Rosanna Verardi
- Department of Trasfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, viale Europa 11, 25123 Brescia, Italy
| | - Elisa Di Pasquale
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milan, Italy
| | - Antonella Consiglio
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy.,Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908 Hospitalet de Llobregat, C/Feixa Larga s/n, 08907 Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Carrer Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23 08010 Barcelona, Spain.,Networking Center of Biomedical Research in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Eleonora Torre
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Raffaella Milanesi
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Mirko Baruscotti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Dario DiFrancesco
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Patrizia Dell'Era
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
13
|
Santini L, Palandri C, Nediani C, Cerbai E, Coppini R. Modelling genetic diseases for drug development: Hypertrophic cardiomyopathy. Pharmacol Res 2020; 160:105176. [DOI: 10.1016/j.phrs.2020.105176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
|
14
|
Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, van Helden RWJ, Krotenberg Garcia A, Mircea M, Kostidis S, Davis RP, van Meer BJ, Jost CR, Koster AJ, Mei H, Míguez DG, Mulder AA, Ledesma-Terrón M, Pompilio G, Sala L, Salvatori DCF, Slieker RC, Sommariva E, de Vries AAF, Giera M, Semrau S, Tertoolen LGJ, Orlova VV, Bellin M, Mummery CL. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell 2020; 26:862-879.e11. [PMID: 32459996 PMCID: PMC7284308 DOI: 10.1016/j.stem.2020.05.004] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening. Cardiac fibroblasts and endothelial cells induce hiPSC-cardiomyocyte maturation CX43 gap junctions form between cardiac fibroblasts and cardiomyocytes cAMP-pathway activation contributes to hiPSC-cardiomyocyte maturation Patient-derived hiPSC-cardiac fibroblasts cause arrhythmia in microtissues
Collapse
Affiliation(s)
- Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Xu Cao
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ruben W J van Helden
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ana Krotenberg Garcia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Maria Mircea
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Carolina R Jost
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - David G Míguez
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aat A Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Mario Ledesma-Terrón
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, VU University Medical Center, 1007 Amsterdam, the Netherlands
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Leon G J Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Biology, University of Padua, 35121 Padua, Italy; Veneto Institute of Molecular Medicine, 35129 Padua, Italy.
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Applied Stem Cell Technologies, University of Twente, 7500 Enschede, the Netherlands.
| |
Collapse
|
15
|
Richards DJ, Li Y, Kerr CM, Yao J, Beeson GC, Coyle RC, Chen X, Jia J, Damon B, Wilson R, Starr Hazard E, Hardiman G, Menick DR, Beeson CC, Yao H, Ye T, Mei Y. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng 2020; 4:446-462. [PMID: 32284552 PMCID: PMC7422941 DOI: 10.1038/s41551-020-0539-4] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Environmental factors are the largest contributors to cardiovascular disease. Here we show that cardiac organoids that incorporate an oxygen-diffusion gradient and that are stimulated with the neurotransmitter noradrenaline model the structure of the human heart after myocardial infarction (by mimicking the infarcted, border and remote zones), and recapitulate hallmarks of myocardial infarction (in particular, pathological metabolic shifts, fibrosis and calcium handling) at the transcriptomic, structural and functional levels. We also show that the organoids can model hypoxia-enhanced doxorubicin cardiotoxicity. Human organoids that model diseases with non-genetic pathological factors could help with drug screening and development.
Collapse
Affiliation(s)
- Dylan J Richards
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Immunology Translational Sciences, Janssen Research and Development, LLC, Spring House, PA, USA
| | - Yang Li
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Charles M Kerr
- Molecular Cell Biology and Pathology Program, Medical University of South Carolina, Charleston, SC, USA
| | - Jenny Yao
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Gyda C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Coyle
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Xun Chen
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Brooke Damon
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Robert Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - E Starr Hazard
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Hardiman
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Donald R Menick
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC, USA
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Hai Yao
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Tong Ye
- Bioengineering Department, Clemson University, Clemson, SC, USA.
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
16
|
Lodrini AM, Barile L, Rocchetti M, Altomare C. Human Induced Pluripotent Stem Cells Derived from a Cardiac Somatic Source: Insights for an In-Vitro Cardiomyocyte Platform. Int J Mol Sci 2020; 21:ijms21020507. [PMID: 31941149 PMCID: PMC7013592 DOI: 10.3390/ijms21020507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has revolutionized the complex scientific field of disease modelling and personalized therapy. Cardiac differentiation of human iPSCs into cardiomyocytes (hiPSC-CMs) has been used in a wide range of healthy and disease models by deriving CMs from different somatic cells. Unfortunately, hiPSC-CMs have to be improved because existing protocols are not completely able to obtain mature CMs recapitulating physiological properties of human adult cardiac cells. Therefore, improvements and advances able to standardize differentiation conditions are needed. Lately, evidences of an epigenetic memory retained by the somatic cells used for deriving hiPSC-CMs has led to evaluation of different somatic sources in order to obtain more mature hiPSC-derived CMs.
Collapse
Affiliation(s)
- Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Lucio Barile
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Claudia Altomare
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Correspondence:
| |
Collapse
|
17
|
Pioner JM, Santini L, Palandri C, Martella D, Lupi F, Langione M, Querceto S, Grandinetti B, Balducci V, Benzoni P, Landi S, Barbuti A, Ferrarese Lupi F, Boarino L, Sartiani L, Tesi C, Mack DL, Regnier M, Cerbai E, Parmeggiani C, Poggesi C, Ferrantini C, Coppini R. Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates. Int J Mol Sci 2019; 20:ijms20153799. [PMID: 31382622 PMCID: PMC6695920 DOI: 10.3390/ijms20153799] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are the most promising human source with preserved genetic background of healthy individuals or patients. This study aimed to establish a systematic procedure for exploring development of hiPSC-CM functional output to predict genetic cardiomyopathy outcomes and identify molecular targets for therapy. Biomimetic substrates with microtopography and physiological stiffness can overcome the immaturity of hiPSC-CM function. We have developed a custom-made apparatus for simultaneous optical measurements of hiPSC-CM action potential and calcium transients to correlate these parameters at specific time points (day 60, 75 and 90 post differentiation) and under inotropic interventions. In later-stages, single hiPSC-CMs revealed prolonged action potential duration, increased calcium transient amplitude and shorter duration that closely resembled those of human adult cardiomyocytes from fresh ventricular tissue of patients. Thus, the major contribution of sarcoplasmic reticulum and positive inotropic response to β-adrenergic stimulation are time-dependent events underlying excitation contraction coupling (ECC) maturation of hiPSC-CM; biomimetic substrates can promote calcium-handling regulation towards adult-like kinetics. Simultaneous optical recordings of long-term cultured hiPSC-CMs on biomimetic substrates favor high-throughput electrophysiological analysis aimed at testing (mechanistic hypothesis on) disease progression and pharmacological interventions in patient-derived hiPSC-CMs.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy.
| | - Lorenzo Santini
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Chiara Palandri
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
- National Institute of Optics, CNR-INO, 50125 Florence, Italy
| | - Flavia Lupi
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
| | - Marianna Langione
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - Silvia Querceto
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
| | | | - Patrizia Benzoni
- Department of Biosciences, Università degli studi di Milano, 20137 Milan, Italy
| | - Sara Landi
- Department of Biosciences, Università degli studi di Milano, 20137 Milan, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli studi di Milano, 20137 Milan, Italy
| | | | - Luca Boarino
- Istituto Nazionale di Ricerca Metrologica INRiM, 10129 Turin, Italy
| | - Laura Sartiani
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98108, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98108, USA
| | - Elisabetta Cerbai
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, 50134 Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
| | - Raffaele Coppini
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
18
|
Neutral Lipid Storage Diseases as Cellular Model to Study Lipid Droplet Function. Cells 2019; 8:cells8020187. [PMID: 30795549 PMCID: PMC6406896 DOI: 10.3390/cells8020187] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023] Open
Abstract
Neutral lipid storage disease with myopathy (NLSDM) and with ichthyosis (NLSDI) are rare autosomal recessive disorders caused by mutations in the PNPLA2 and in the ABHD5/CGI58 genes, respectively. These genes encode the adipose triglyceride lipase (ATGL) and α-β hydrolase domain 5 (ABHD5) proteins, which play key roles in the function of lipid droplets (LDs). LDs, the main cellular storage sites of triacylglycerols and sterol esters, are highly dynamic organelles. Indeed, LDs are critical for both lipid metabolism and energy homeostasis. Partial or total PNPLA2 or ABHD5/CGI58 knockdown is characteristic of the cells of NLSD patients; thus, these cells are natural models with which one can unravel LD function. In this review we firstly summarize genetic and clinical data collected from NLSD patients, focusing particularly on muscle, skin, heart, and liver damage due to impaired LD function. Then, we discuss how NLSD cells were used to investigate and expand the current structural and functional knowledge of LDs.
Collapse
|
19
|
Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosens Bioelectron 2019; 124-125:129-135. [DOI: 10.1016/j.bios.2018.10.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022]
|
20
|
Fermini B, Coyne KP, Coyne ST. Challenges in designing and executing clinical trials in a dish studies. J Pharmacol Toxicol Methods 2018; 94:73-82. [PMID: 30267757 DOI: 10.1016/j.vascn.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
Abstract
The ever-increasing cost of drug discovery and development represents a significant challenge for the pharmaceutical industry and new strategies to bridge studies between preclinical testing and clinical trials are needed to reduce the knowledge gap prior to first human exposures, and to allow earlier decisions to be made on the further development of drugs. A number of studies have demonstrated that various cell types differentiated from human induced pluripotent stem cells (iPSCs) do not just respond similarly to human tissues in general, but rather recapitulate the drug response of their specific donor's, when exposed to the same drug in vivo. This recapitulation opens the doors to Clinical Trials in a Dish (CTiD), a platform which involves testing, in vitro, medical therapies for safety on cells collected from a sample of human patients, before moving into clinical trials. However, the science behind CTiD is complex, and every element of the process from tissue acquisition to data generation must be assessed and designed to meet quality metrics and standards. Without such rigorous assessment and design, the basic scientific integrity of CTiD constructs is likely compromised, and the results questionable. Given the lack of standard process and/or quality metrics in place for the use of stem cell-based products for in vitro testing per se, we discuss here the key elements that one needs to consider when designing, implementing and executing CTiD studies, in order to ensure an approach that will reliably mimic clinical trials, and allow obtaining reproducible and reliable experimental data.
Collapse
Affiliation(s)
- Bernard Fermini
- Coyne Scientific, 1899 Powers Ferry Road SE, Atlanta, GA 30339, USA.
| | - Kevin P Coyne
- Coyne Scientific, 1899 Powers Ferry Road SE, Atlanta, GA 30339, USA
| | - Shawn T Coyne
- Coyne Scientific, 1899 Powers Ferry Road SE, Atlanta, GA 30339, USA
| |
Collapse
|
21
|
Tsifaki M, Kelaini S, Caines R, Yang C, Margariti A. Regenerating the Cardiovascular System Through Cell Reprogramming; Current Approaches and a Look Into the Future. Front Cardiovasc Med 2018; 5:109. [PMID: 30177971 PMCID: PMC6109758 DOI: 10.3389/fcvm.2018.00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD), despite the advances of the medical field, remains one of the leading causes of mortality worldwide. Discovering novel treatments based on cell therapy or drugs is critical, and induced pluripotent stem cells (iPS Cells) technology has made it possible to design extensive disease-specific in vitro models. Elucidating the differentiation process challenged our previous knowledge of cell plasticity and capabilities and allows the concept of cell reprogramming technology to be established, which has inspired the creation of both in vitro and in vivo techniques. Patient-specific cell lines provide the opportunity of studying their pathophysiology in vitro, which can lead to novel drug development. At the same time, in vivo models have been designed where in situ transdifferentiation of cell populations into cardiomyocytes or endothelial cells (ECs) give hope toward effective cell therapies. Unfortunately, the efficiency as well as the concerns about the safety of all these methods make it exceedingly difficult to pass to the clinical trial phase. It is our opinion that creating an ex vivo model out of patient-specific cells will be one of the most important goals in the future to help surpass all these hindrances. Thus, in this review we aim to present the current state of research in reprogramming toward the cardiovascular system's regeneration, and showcase how the development and study of a multicellular 3D ex vivo model will improve our fighting chances.
Collapse
Affiliation(s)
- Marianna Tsifaki
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Rachel Caines
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Chunbo Yang
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
22
|
Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications. Cells 2018; 7:cells7060048. [PMID: 29799480 PMCID: PMC6025241 DOI: 10.3390/cells7060048] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs; the methods used to improve scalability of throughput assays for functional screening and drug testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential use in biomedical applications.
Collapse
|
23
|
Neyrinck K, Breuls N, Holvoet B, Oosterlinck W, Wolfs E, Vanbilloen H, Gheysens O, Duelen R, Gsell W, Lambrichts I, Himmelreich U, Verfaillie CM, Sampaolesi M, Deroose CM. The human somatostatin receptor type 2 as an imaging and suicide reporter gene for pluripotent stem cell-derived therapy of myocardial infarction. Am J Cancer Res 2018; 8:2799-2813. [PMID: 29774076 PMCID: PMC5957010 DOI: 10.7150/thno.22980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Rationale: Pluripotent stem cells (PSCs) are being investigated as a cell source for regenerative medicine since they provide an infinitive pool of cells that are able to differentiate towards every cell type of the body. One possible therapeutic application involves the use of these cells to treat myocardial infarction (MI), a condition where billions of cardiomyocytes (CMs) are lost. Although several protocols have been developed to differentiate PSCs towards CMs, none of these provide a completely pure population, thereby still posing a risk for neoplastic teratoma formation. Therefore, we developed a strategy to (i) monitor cell behavior noninvasively via site-specific integration of firefly luciferase (Fluc) and the human positron emission tomography (PET) imaging reporter genes, sodium iodide symporter (hNIS) and somatostatin receptor type 2 (hSSTr2), and (ii) perform hSSTr2-mediated suicide gene therapy via the clinically used radiopharmacon 177Lu-DOTATATE. Methods: Human embryonic stem cells (ESCs) were gene-edited via zinc finger nucleases to express Fluc and either hNIS or hSSTr2 in the safe harbor locus, adeno-associated virus integration site 1. Firstly, these cells were exposed to 4.8 MBq 177Lu-DOTATATE in vitro and cell survival was monitored via bioluminescence imaging (BLI). Afterwards, hNIS+ and hSSTr2+ ESCs were transplanted subcutaneously and teratomas were allowed to form. At day 59, baseline 124I and 68Ga-DOTATATE PET and BLI scans were performed. The day after, animals received either saline or 55 MBq 177Lu-DOTATATE. Weekly BLI scans were performed, accompanied by 124I and 68Ga-DOTATATE PET scans at days 87 and 88, respectively. Finally, hSSTr2+ ESCs were differentiated towards CMs and transplanted intramyocardially in the border zone of an infarct that was induced by left anterior descending coronary artery ligation. After transplantation, the animals were monitored via BLI and PET, while global cardiac function was evaluated using cardiac magnetic resonance imaging. Results: Teratoma growth of both hNIS+ and hSSTr2+ ESCs could be followed noninvasively over time by both PET and BLI. After 177Lu-DOTATATE administration, successful cell killing of the hSSTr2+ ESCs was achieved both in vitro and in vivo, indicated by reductions in total tracer lesion uptake, BLI signal and teratoma volume. As undifferentiated hSSTr2+ ESCs are not therapeutically relevant, they were differentiated towards CMs and injected in immune-deficient mice with a MI. Long-term cell survival could be monitored without uncontrolled cell proliferation. However, no improvement in the left ventricular ejection fraction was observed. Conclusion: We developed isogenic hSSTr2-expressing ESCs that allow noninvasive cell monitoring in the context of PSC-derived regenerative therapy. Furthermore, we are the first to use the hSSTr2 not only as an imaging reporter gene, but also as a suicide mechanism for radionuclide therapy in the setting of PSC-derived cell treatment.
Collapse
|
24
|
Selga E, Sendfeld F, Martinez-Moreno R, Medine CN, Tura-Ceide O, Wilmut SI, Pérez GJ, Scornik FS, Brugada R, Mills NL. Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. J Mol Cell Cardiol 2018; 114:10-19. [PMID: 29024690 PMCID: PMC5807028 DOI: 10.1016/j.yjmcc.2017.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/24/2022]
Abstract
Brugada syndrome predisposes to sudden death due to disruption of normal cardiac ion channel function, yet our understanding of the underlying cellular mechanisms is incomplete. Commonly used heterologous expression models lack many characteristics of native cardiomyocytes and, in particular, the individual genetic background of a patient. Patient-specific induced pluripotent stem (iPS) cell-derived cardiomyocytes (iPS-CM) may uncover cellular phenotypical characteristics not observed in heterologous models. Our objective was to determine the properties of the sodium current in iPS-CM with a mutation in SCN5A associated with Brugada syndrome. Dermal fibroblasts from a Brugada syndrome patient with a mutation in SCN5A (c.1100G>A, leading to Nav1.5_p.R367H) were reprogrammed to iPS cells. Clones were characterized and differentiated to form beating clusters and sheets. Patient and control iPS-CM were structurally indistinguishable. Sodium current properties of patient and control iPS-CM were compared. These results were contrasted with those obtained in tsA201 cells heterologously expressing sodium channels with the same mutation. Patient-derived iPS-CM showed a 33.1-45.5% reduction in INa density, a shift in both activation and inactivation voltage-dependence curves, and faster recovery from inactivation. Co-expression of wild-type and mutant channels in tsA201 cells did not compromise channel trafficking to the membrane, but resulted in a reduction of 49.8% in sodium current density without affecting any other parameters. Cardiomyocytes derived from iPS cells from a Brugada syndrome patient with a mutation in SCN5A recapitulate the loss of function of sodium channel current associated with this syndrome; including pro-arrhythmic changes in channel function not detected using conventional heterologous expression systems.
Collapse
Affiliation(s)
- Elisabet Selga
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Franziska Sendfeld
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom; BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom
| | - Rebecca Martinez-Moreno
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Claire N Medine
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom; BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, University of Barcelona, Spain
| | - Sir Ian Wilmut
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
| | - Guillermo J Pérez
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Fabiana S Scornik
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ramon Brugada
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Hospital Josep Trueta, Girona, Spain
| | - Nicholas L Mills
- BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
25
|
Giacomelli E, Mummery CL, Bellin M. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2017; 74:3711-3739. [PMID: 28573431 PMCID: PMC5597692 DOI: 10.1007/s00018-017-2546-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.
Collapse
Affiliation(s)
- E Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - C L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Building Zuidhorst, 7500 AE, Enschede, The Netherlands
| | - M Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
26
|
Peischard S, Piccini I, Strutz-Seebohm N, Greber B, Seebohm G. From iPSC towards cardiac tissue-a road under construction. Pflugers Arch 2017; 469:1233-1243. [PMID: 28573409 PMCID: PMC5590027 DOI: 10.1007/s00424-017-2003-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/16/2023]
Abstract
The possibility to generate induced pluripotent stem cells (iPSC) opens the way to generate virtually all cell types of our human body. In combination with modern gene editing techniques like CRISPR/CAS, a new set of powerful tools becomes available for life science. Scientific fields like genotype and cell type-specific pharmacology, disease modeling, stem cell biology, and developmental biology have been dramatically fostered and their faces have been changed. However, as golden as the age of iPSC-derived cells and their manipulation has started, the shine begins to tarnish. Researchers face more and more practical problems intrinsic to the system. These problems are related to the specific culturing conditions which are not yet sufficient to mimic the natural environment of native stem cells differentiating towards adult cells. However, researchers work hard to uncover these factors. Here, we review a common standard approach to generate iPSCs and transduce these to iPSC cardiomyocytes. Further, we review recent achievements and discuss their current limitations and future perspectives. We are on track, but the road is still under construction.
Collapse
Affiliation(s)
- Stefan Peischard
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
| | - Ilaria Piccini
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
- Human Stem Cell Pluripotency Group, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227, Münster, Germany
- Innovative Medizinische Forschung (IMF), Münster, Germany
| | - Nathalie Strutz-Seebohm
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
| | - Boris Greber
- Human Stem Cell Pluripotency Group, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227, Münster, Germany
| | - Guiscard Seebohm
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany.
- Innovative Medizinische Forschung (IMF), Münster, Germany.
- Institut für Genetik von Herzerkrankungen (IfGH), Department für Kardiologie und Angiologie, Universitätsklinikum Münster, 48149, Münster, Germany.
| |
Collapse
|
27
|
Inspiration from heart development: Biomimetic development of functional human cardiac organoids. Biomaterials 2017; 142:112-123. [PMID: 28732246 DOI: 10.1016/j.biomaterials.2017.07.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/02/2023]
Abstract
Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair.
Collapse
|
28
|
Mora C, Serzanti M, Consiglio A, Memo M, Dell'Era P. Clinical potentials of human pluripotent stem cells. Cell Biol Toxicol 2017; 33:351-360. [PMID: 28176010 DOI: 10.1007/s10565-017-9384-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
Aging, injuries, and diseases can be considered as the result of malfunctioning or damaged cells. Regenerative medicine aims to restore tissue homeostasis by repairing or replacing cells, tissues, or damaged organs, by linking and combining different disciplines including engineering, technology, biology, and medicine. To pursue these goals, the discipline is taking advantage of pluripotent stem cells (PSCs), a peculiar type of cell possessing the ability to differentiate into every cell type of the body. Human PSCs can be isolated from the blastocysts and maintained in culture indefinitely, giving rise to the so-called embryonic stem cells (ESCs). However, since 2006, it is possible to restore in an adult cell a pluripotent ESC-like condition by forcing the expression of four transcription factors with the rejuvenating reprogramming technology invented by Yamanaka. Then the two types of PSC can be differentiated, using standardized protocols, towards the cell type necessary for the regeneration. Although the use of these derivatives for therapeutic transplantation is still in the preliminary phase of safety and efficacy studies, a lot of efforts are presently taking place to discover the biological mechanisms underlying genetic pathologies, by differentiating induced PSCs derived from patients, and new therapies by challenging PSC-derived cells in drug screening.
Collapse
Affiliation(s)
- Cristina Mora
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Marialaura Serzanti
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Antonella Consiglio
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Maurizio Memo
- Pharmacology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.
| |
Collapse
|
29
|
Daily NJ, Santos R, Vecchi J, Kemanli P, Wakatsuki T. Calcium Transient Assays for Compound Screening with Human iPSC-derived Cardiomyocytes: Evaluating New Tools. JOURNAL OF EVOLVING STEM CELL RESEARCH 2017; 1:1-11. [PMID: 28966998 PMCID: PMC5621642 DOI: 10.14302/issn.2574-4372.jesr-16-1395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium (Ca2+) plays a central role in regulating many biological processes in the cell from muscle contraction to neurotransmitter release. The need for reliable fluorescent calcium indicator dyes is of vast importance for studying many aspects of cell biology as well as screening compounds using phenotypic high throughput assays. We have assessed two of the latest generation of calcium indicator dyes, FLIPR Calcium 6 and Cal-520 AM for studying calcium transients (CaTs) in induced pluripotent stem cell (iPSC) -derived human cardiomyocytes. FLIPR Calcium 6 and Cal-520 dyes both displayed robust CaTs with a high signal-to-noise ratio (SNR) and were non-toxic to the cells. The analysis showed that CaT amplitudes were stable between measurements, but CaT duration was more variable and tended to increase between reads. Two methods were compared for drug-screening hit-selection; difference in average (unstandardized) and standardized difference. The unstandardized difference was better for assessing CaT amplitude, whereas standardized difference was equal to or better for assessing CaT duration. In summary, FLIPR Calcium 6 and Cal-520 are suitable dyes for drug-screening using iPSC-derived human cardiomyocytes.
Collapse
Affiliation(s)
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL
| | | | | | | |
Collapse
|
30
|
Pesl M, Pribyl J, Caluori G, Cmiel V, Acimovic I, Jelinkova S, Dvorak P, Starek Z, Skladal P, Rotrekl V. Phenotypic assays for analyses of pluripotent stem cell-derived cardiomyocytes. J Mol Recognit 2016; 30. [PMID: 27995655 DOI: 10.1002/jmr.2602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/27/2022]
Abstract
Stem cell-derived cardiomyocytes (CMs) hold great hopes for myocardium regeneration because of their ability to produce functional cardiac cells in large quantities. They also hold promise in dissecting the molecular principles involved in heart diseases and also in drug development, owing to their ability to model the diseases using patient-specific human pluripotent stem cell (hPSC)-derived CMs. The CM properties essential for the desired applications are frequently evaluated through morphologic and genotypic screenings. Even though these characterizations are necessary, they cannot in principle guarantee the CM functionality and their drug response. The CM functional characteristics can be quantified by phenotype assays, including electrophysiological, optical, and/or mechanical approaches implemented in the past decades, especially when used to investigate responses of the CMs to known stimuli (eg, adrenergic stimulation). Such methods can be used to indirectly determine the electrochemomechanics of the cardiac excitation-contraction coupling, which determines important functional properties of the hPSC-derived CMs, such as their differentiation efficacy, their maturation level, and their functionality. In this work, we aim to systematically review the techniques and methodologies implemented in the phenotype characterization of hPSC-derived CMs. Further, we introduce a novel approach combining atomic force microscopy, fluorescent microscopy, and external electrophysiology through microelectrode arrays. We demonstrate that this novel method can be used to gain unique information on the complex excitation-contraction coupling dynamics of the hPSC-derived CMs.
Collapse
Affiliation(s)
- Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Guido Caluori
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Zdenek Starek
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Skladal
- CEITEC, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
31
|
Barbuti A, Benzoni P, Campostrini G, Dell'Era P. Human derived cardiomyocytes: A decade of knowledge after the discovery of induced pluripotent stem cells. Dev Dyn 2016; 245:1145-1158. [DOI: 10.1002/dvdy.24455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Andrea Barbuti
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Benzoni
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Giulia Campostrini
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine; Università degli Studi di Brescia; Brescia Italy
| |
Collapse
|
32
|
Del Álamo JC, Lemons D, Serrano R, Savchenko A, Cerignoli F, Bodmer R, Mercola M. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1717-27. [PMID: 26952934 DOI: 10.1016/j.bbamcr.2016.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/25/2022]
Abstract
Cardiac drug discovery is hampered by the reliance on non-human animal and cellular models with inadequate throughput and physiological fidelity to accurately identify new targets and test novel therapeutic strategies. Similarly, adverse drug effects on the heart are challenging to model, contributing to costly failure of drugs during development and even after market launch. Human induced pluripotent stem cell derived cardiac tissue represents a potentially powerful means to model aspects of heart physiology relevant to disease and adverse drug effects, providing both the human context and throughput needed to improve the efficiency of drug development. Here we review emerging technologies for high throughput measurements of cardiomyocyte physiology, and comment on the promises and challenges of using iPSC-derived cardiomyocytes to model disease and introduce the human context into early stages of drug discovery. This article is part of a Special Issue entitled: Cardiomyocyte biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Juan C Del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive MC 0411, La Jolla, CA 92093-0411, USA
| | - Derek Lemons
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA; Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, CA 92037, USA
| | - Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive MC 0411, La Jolla, CA 92093-0411, USA
| | - Alex Savchenko
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA; Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, CA 92037, USA; Stanford Cardiovascular Institute, 265 Campus Dr., Stanford, CA 94305-5454, USA
| | - Fabio Cerignoli
- ACEA Biosciences, Inc., 6779 Mesa Ridge Road, San Diego, CA 92121, USA
| | - Rolf Bodmer
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, CA 92037, USA
| | - Mark Mercola
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA; Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, CA 92037, USA; Stanford Cardiovascular Institute, 265 Campus Dr., Stanford, CA 94305-5454, USA.
| |
Collapse
|
33
|
In vitro cardiac tissue models: Current status and future prospects. Adv Drug Deliv Rev 2016; 96:203-13. [PMID: 26428618 DOI: 10.1016/j.addr.2015.09.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/15/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Achieving the next phase of potential treatment strategies and better prognostic tools will require a concerted effort from interdisciplinary fields. Biomaterials-based cardiac tissue models are revolutionizing the area of preclinical research and translational applications. The goal of in vitro cardiac tissue modeling is to create physiological functional models of the human myocardium, which is a difficult task due to the complex structure and function of the human heart. This review describes the advances made in area of in vitro cardiac models using biomaterials and bioinspired platforms. The field has progressed extensively in the past decade, and we envision its applications in the areas of drug screening, disease modeling, and precision medicine.
Collapse
|
34
|
Laurila E, Ahola A, Hyttinen J, Aalto-Setälä K. Methods for in vitro functional analysis of iPSC derived cardiomyocytes - Special focus on analyzing the mechanical beating behavior. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1864-72. [PMID: 26707468 DOI: 10.1016/j.bbamcr.2015.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023]
Abstract
A rapidly increasing number of papers describing novel iPSC models for cardiac diseases are being published. To be able to understand the disease mechanisms in more detail, we should also take the full advantage of the various methods for analyzing these cell models. The traditionally and commonly used electrophysiological analysis methods have been recently accompanied by novel approaches for analyzing the mechanical beatingbehavior of the cardiomyocytes. In this review, we provide first a concise overview on the methodology for cardiomyocyte functional analysis and then concentrate on the video microscopy, which provides a promise for a new faster yet reliable method for cardiomyocyte functional analysis. We also show how analysis conditions may affect the results. Development of the methodology not only serves the basic research on the disease models, but could also provide the much needed efficient early phase screening method for cardiac safety toxicology. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Eeva Laurila
- University of Tampere, BioMediTech and School of Medicine, Tampere, Finland.
| | - Antti Ahola
- Tampere University of Technology, Department of Electronics and Communications Engineering, BioMediTech, Tampere, Finland
| | - Jari Hyttinen
- Tampere University of Technology, Department of Electronics and Communications Engineering, BioMediTech, Tampere, Finland
| | - Katriina Aalto-Setälä
- University of Tampere, BioMediTech and School of Medicine, Tampere, Finland; Heart Hospital, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
35
|
Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci 2015; 145:98-113. [PMID: 26682938 DOI: 10.1016/j.lfs.2015.12.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/08/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022]
Abstract
The human heart is considered a non-regenerative organ. Worldwide, cardiovascular diseases continue to be the leading cause of death. Despite advances in cardiac treatment, myocardial repair remains severely limited by the lack of an appropriate source of viable cardiomyocytes (CMs) to replace damaged tissue. Human pluripotent stem cells (hPSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can efficiently be differentiated into functional CMs necessary for cell replacement therapy and other potential applications. The number of protocols that derive CMs from hPSCs has increased exponentially over the past decade following observation of the first human beating CMs. A number of highly efficient, chemical based protocols have been developed to generate human CMs (hCMs) in small-scale and large-scale suspension systems. To reduce the heterogeneity of hPSC-derived CMs, the differentiation protocols were modulated to exclusively generate atrial-, ventricular-, and nodal-like CM subtypes. Recently, remarkable advances have been achieved in hCM generation including chemical-based cardiac differentiation, cardiac subtype specification, large-scale suspension culture differentiation, and development of chemically defined culture conditions. These hCMs could be useful particularly in the context of in vitro disease modeling, pharmaceutical screening and in cellular replacement therapies once the safety issues are overcome. Herein we review recent progress in the in vitro generation of CMs and cardiac subtypes from hPSCs and discuss their potential applications and current limitations.
Collapse
|
36
|
Fonoudi H, Ansari H, Abbasalizadeh S, Larijani MR, Kiani S, Hashemizadeh S, Zarchi AS, Bosman A, Blue GM, Pahlavan S, Perry M, Orr Y, Mayorchak Y, Vandenberg J, Talkhabi M, Winlaw DS, Harvey RP, Aghdami N, Baharvand H. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Stem Cells Transl Med 2015; 4:1482-1494. [PMID: 26511653 PMCID: PMC4675501 DOI: 10.5966/sctm.2014-0275] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Recent advances in the generation of cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs), in conjunction with the promising outcomes from preclinical and clinical studies, have raised new hopes for cardiac cell therapy. We report the development of a scalable, robust, and integrated differentiation platform for large-scale production of hPSC-CM aggregates in a stirred suspension bioreactor as a single-unit operation. Precise modulation of the differentiation process by small molecule activation of WNT signaling, followed by inactivation of transforming growth factor-β and WNT signaling and activation of sonic hedgehog signaling in hPSCs as size-controlled aggregates led to the generation of approximately 100% beating CM spheroids containing virtually pure (∼90%) CMs in 10 days. Moreover, the developed differentiation strategy was universal, as demonstrated by testing multiple hPSC lines (5 human embryonic stem cell and 4 human inducible PSC lines) without cell sorting or selection. The produced hPSC-CMs successfully expressed canonical lineage-specific markers and showed high functionality, as demonstrated by microelectrode array and electrophysiology tests. This robust and universal platform could become a valuable tool for the mass production of functional hPSC-CMs as a prerequisite for realizing their promising potential for therapeutic and industrial applications, including drug discovery and toxicity assays. SIGNIFICANCE Recent advances in the generation of cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs) and the development of novel cell therapy strategies using hPSC-CMs (e.g., cardiac patches) in conjunction with promising preclinical and clinical studies, have raised new hopes for patients with end-stage cardiovascular disease, which remains the leading cause of morbidity and mortality globally. In this study, a simplified, scalable, robust, and integrated differentiation platform was developed to generate clinical grade hPSC-CMs as cell aggregates under chemically defined culture conditions. This approach resulted in approximately 100% beating CM spheroids with virtually pure (∼90%) functional cardiomyocytes in 10 days from multiple hPSC lines. This universal and robust bioprocessing platform can provide sufficient numbers of hPSC-CMs for companies developing regenerative medicine technologies to rescue, replace, and help repair damaged heart tissues and for pharmaceutical companies developing advanced biologics and drugs for regeneration of lost heart tissue using high-throughput technologies. It is believed that this technology can expedite clinical progress in these areas to achieve a meaningful impact on improving clinical outcomes, cost of care, and quality of life for those patients disabled and experiencing heart disease.
Collapse
Affiliation(s)
- Hananeh Fonoudi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Mehran Rezaei Larijani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Sahar Kiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Shiva Hashemizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Ali Sharifi Zarchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Alexis Bosman
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Gillian M Blue
- Kids Heart Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia The Heart Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Matthew Perry
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| | - Yishay Orr
- Kids Heart Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia The Heart Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Yaroslav Mayorchak
- The Heart Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Jamie Vandenberg
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| | - Mahmood Talkhabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - David S Winlaw
- Kids Heart Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia The Heart Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran Department of Developmental Biology, University of Science and Culture, Academic Center for Education, Culture and Research, Tehran, Iran
| |
Collapse
|