1
|
Shetty L, Waknis PP, Kharat A, Bhonde R, Londhe U, Rudagi BM, Kheur SM, Bhate K. Chemical preconditioning escalates chondrogenic activity in explant cultured human dental pulp stem cell study model for future temporomandibular joint regeneration. Natl J Maxillofac Surg 2024; 15:214-219. [PMID: 39234119 PMCID: PMC11371304 DOI: 10.4103/njms.njms_207_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 09/06/2024] Open
Abstract
Context Human dental pulp stem cells (hDPSC) derived from dental pulp in conducive environment activated by chemicals can enhance chondrogenic cells for future animal model temporomandibular joint model. Aim The study aims at evaluating the chemicals preconditioning (curcumin and rapamycin) efficacy toward chondrogenic proliferation of human dental pulp stem cells. Settings and Design The in vitro study model with 10 premolar teeth extirpated pulp was processed under sterile chemical conditions. The cells viability was checked with calorimetric assay for adipogenic and chondrogenic, osteogenic lineages. The viability of the cells and the concentration of curcumin (CU) and rapamycin (RP) required for cell differentiation toward chondrogenic lineage were assessed. Material and Methods The hDPSC was evaluated after explant long-term cultivation with characterization and chemical conditioning with dimethyl sulfoxide (DMSO) as control. MTT assay was used for cytotoxicity evaluation, cell viability, and proliferation. The dose optimization was observed with RP and CU. Chondrogenic proliferation was assessed with standard staining method of 0.1% Safranin O and 0.1% Alcian blue. Statistical Design The flow cytometry analysis revealed good results for CD 90 compared to others. The intergroup analysis was done by ANOVA, and intragroup analysis was done by Post hoc Tukey's test. The intragroup analysis showed P value < 0.05 for RP in comparison between the various preconditioning agents CU and RP. The dosage of 10 µg/ml RP was considered statistically significant. Results The flow cytometer analysis revealed good results for CD 90 compared to other surface markers. The dosage of 10 µg/ml RP was having good chondrogenic cell proliferation. The intragroup analysis showed P value < 0.05 for RP in comparison between the various preconditioning agents CU and RP. The calorimetric assay (MTT) quantitative analysis of the chondrogenic cells with Safranin O stain the standard deviation (SD = 0.017 for rapamycin), Alcian blue (SD = 0.49 for RP) in comparison to DMSO (control) and CU. Conclusion RP activates mTOR pathway and hence stabilizes the stem cell maintenance of human dental pulp stem cell and the dose quantified can be used for future animal temporomandibular joint animal model.
Collapse
Affiliation(s)
- Lakshmi Shetty
- Department of Oral and Maxillofacial Surgery, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Pushkar P. Waknis
- Department of Oral and Maxillofacial Surgery, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Uday Londhe
- Department of Oral and Maxillofacial Surgery, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - B. M. Rudagi
- Department of Oral and Maxillofacial Surgery, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Supriya M. Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Kalyani Bhate
- Department of Oral and Maxillofacial Surgery, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
2
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Hou SJ, Zhang SX, Li Y, Xu SY. Rapamycin Responds to Alzheimer's Disease: A Potential Translational Therapy. Clin Interv Aging 2023; 18:1629-1639. [PMID: 37810956 PMCID: PMC10557994 DOI: 10.2147/cia.s429440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Alzheimer's disease (AD) is a sporadic or familial neurodegenerative disease of insidious onset with progressive cognitive decline. Although numerous studies have been conducted or are underway on AD, there are still no effective drugs to reverse the pathological features and clinical manifestations of AD. Rapamycin is a macrolide antibiotic produced by Streptomyces hygroscopicus. As a classical mechanistic target of rapamycin (mTOR) inhibitor, rapamycin has been shown to be beneficial in a variety of AD mouse and cells models, both before the onset of disease symptoms and the early stage of disease. Although many basic studies have demonstrated the therapeutic effects of rapamycin in AD, many questions and controversies remain. This may be due to the variability of experimental models, different modes of administration, dose, timing, frequency, and the availability of drug-targeting vehicles. Rapamycin may delay the development of AD by reducing β-amyloid (Aβ) deposition, inhibiting tau protein hyperphosphorylation, maintaining brain function in APOE ε4 gene carriers, clearing chronic inflammation, and improving cognitive dysfunction. It is thus expected to be one of the candidates for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Si-Jia Hou
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People’s Republic of China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People’s Republic of China
| | - Yang Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People’s Republic of China
| | - Sui-Yi Xu
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People’s Republic of China
| |
Collapse
|
4
|
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI JOURNAL 2023; 22:690-715. [PMID: 37593239 PMCID: PMC10427777 DOI: 10.17179/excli2023-6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
As a significant non-communicable disease, cardiovascular disease is the leading cause of death for both men and women, comprises almost twenty percent of deaths in most racial and ethnic groups, can affect greater than twenty-five million individuals worldwide over the age of twenty, and impacts global economies with far-reaching financial challenges. Multiple factors can affect the onset of cardiovascular disease that include high serum cholesterol levels, elevated blood pressure, tobacco consumption and secondhand smoke exposure, poor nutrition, physical inactivity, obesity, and concurrent diabetes mellitus. Yet, addressing any of these factors cannot completely eliminate the onset or progression of cardiovascular disorders. Novel strategies are necessary to target underlying cardiovascular disease mechanisms. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), a histone deacetylase, can limit cardiovascular injury, assist with stem cell development, oversee metabolic homeostasis through nicotinamide adenine dinucleotide (NAD+) pathways, foster trophic factor protection, and control cell senescence through the modulation of telomere function. Intimately tied to SIRT1 pathways are mammalian forkhead transcription factors (FoxOs) which can modulate cardiac disease to reduce oxidative stress, repair microcirculation disturbances, and reduce atherogenesis through pathways of autophagy, apoptosis, and ferroptosis. AMP activated protein kinase (AMPK) also is critical among these pathways for the oversight of cardiac cellular metabolism, insulin sensitivity, mitochondrial function, inflammation, and the susceptibility to viral infections such as severe acute respiratory syndrome coronavirus that can impact cardiovascular disease. Yet, the relationship among these pathways is both intricate and complex and requires detailed insight to successfully translate these pathways into clinical care for cardiovascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
5
|
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. FRONT BIOSCI-LANDMRK 2021; 26:614-627. [PMID: 34590471 PMCID: PMC8756734 DOI: 10.52586/4971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
Introduction: Dementia and cognitive loss impact a significant proportion of the global population and present almost insurmountable challenges for treatment since they stem from multifactorial etiologies. Innovative avenues for treatment are highly warranted. Methods and results: Novel work with biological clock genes that oversee circadian rhythm may meet this critical need by focusing upon the pathways of the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), and the wingless Wnt pathway. These pathways are complex in nature, intimately associated with autophagy that can maintain circadian rhythm, and have an intricate relationship that can lead to beneficial outcomes that may offer neuroprotection, metabolic homeostasis, and prevention of cognitive loss. However, biological clocks and alterations in circadian rhythm also have the potential to lead to devastating effects involving tumorigenesis in conjunction with pathways involving Wnt that oversee angiogenesis and stem cell proliferation. Conclusions: Current work with biological clocks and circadian rhythm pathways provide exciting possibilities for the treating dementia and cognitive loss, but also provide powerful arguments to further comprehend the intimate and complex relationship among these pathways to fully potentiate desired clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
6
|
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13:23-34. [PMID: 31794280 PMCID: PMC6959472 DOI: 10.1080/17512433.2020.1698288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Dementia is the 7th leading cause of death that imposes a significant financial and service burden on the global population. Presently, only symptomatic care exists for cognitive loss, such as Alzheimer's disease.Areas covered: Given the advancing age of the global population, it becomes imperative to develop innovative therapeutic strategies for cognitive loss. New studies provide insight to the association of cognitive loss with metabolic disorders, such as diabetes mellitus.Expert opinion: Diabetes mellitus is increasing in incidence throughout the world and affects 350 million individuals. Treatment strategies identifying novel pathways that oversee metabolic and neurodegenerative disorders offer exciting prospects to treat dementia. The mechanistic target of rapamycin (mTOR) and circadian clock gene pathways that include AMP activated protein kinase (AMPK), Wnt1 inducible signaling pathway protein 1 (WISP1), erythropoietin (EPO), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) provide novel strategies to treat cognitive loss that has its basis in metabolic cellular dysfunction. However, these pathways are complex and require precise regulation to maximize treatment efficacy and minimize any potential clinical disability. Further investigations hold great promise to treat both the onset and progression of cognitive loss that is associated with metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
7
|
Pang J, Han L, Liu Z, Zheng J, Zhao J, Deng K, Wang F, Zhang Y. ULK1 affects cell viability of goat Sertoli cell by modulating both autophagy and apoptosis. In Vitro Cell Dev Biol Anim 2019; 55:604-613. [PMID: 31359348 DOI: 10.1007/s11626-019-00371-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/15/2019] [Indexed: 12/01/2022]
Abstract
Sertoli cells (SCs) are necessary for proper germ cell development and viability. Unc-51 like autophagy activating kinase (ULK1) protein kinase is an important regulator of autophagy activation. This study aims to investigate the role of autophagy promoter ULK1 on cell viability of goat SCs. Our results showed that ULK1 knockdown in goat SCs decreased autophagy activation, which was confirmed by decreased expression of autophagy-related markers including LC3, Beclin1, Atg5, and Atg7 (P < 0.05). Meanwhile, lower ULK1 levels resulted in decreased expressions of goat SC marker genes ABP, AMH, FASL, and GATA4. However, a reverse trend of these parameters occurred when the goat SCs were transfected with ULK1 overexpression construct; higher ULK1 levels in goat SCs also decreased the ratio of Bax/Bcl-2. Moreover, ULK1 overexpression in goat SCs activated the autophagy levels when cells were exposed to an environmental contaminant bisphenol A (BPA). The above results indicated that ULK1 gene might play important roles in goat SC function by regulating cell viability.
Collapse
Affiliation(s)
- Jing Pang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Le Han
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zifei Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jian Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jie Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Kaiping Deng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Feng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanli Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
8
|
Ngom M, Imren S, Maetzig T, Adair JE, Knapp DJHF, Chagraoui J, Fares I, Bordeleau ME, Sauvageau G, Leboulch P, Eaves C, Humphries RK. UM171 Enhances Lentiviral Gene Transfer and Recovery of Primitive Human Hematopoietic Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:156-164. [PMID: 30101153 PMCID: PMC6077133 DOI: 10.1016/j.omtm.2018.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 06/28/2018] [Indexed: 11/19/2022]
Abstract
Enhanced gene transfer efficiencies and higher yields of transplantable transduced human hematopoietic stem cells are continuing goals for improving clinical protocols that use stemcell-based gene therapies. Here, we examined the effect of the HSC agonist UM171 on these endpoints in both in vitro and in vivo systems. Using a 22-hr transduction protocol, we found that UM171 significantly enhances both the lentivirus-mediated transduction and yield of CD34+ and CD34+CD45RA- hematopoietic cells from human cord blood to give a 6-fold overall higher recovery of transduced hematopoietic stem cells, including cells with long-term lympho-myeloid repopulating activity in immunodeficient mice. The ability of UM171 to enhance gene transfer to primitive cord blood hematopoietic cells extended to multiple lentiviral pseudotypes, gamma retroviruses, and non-integrating lentiviruses and to adult bone marrow cells. UM171, thus, provides an interesting reagent for improving the ex vivo production of gene-modified cells and for reducing requirements of virus for a broad range of applications.
Collapse
Affiliation(s)
- Mor Ngom
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver BC V5Z 1L3, Canada
| | - Suzan Imren
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver BC V5Z 1L3, Canada
| | - Tobias Maetzig
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver BC V5Z 1L3, Canada
| | - Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David J H F Knapp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver BC V5Z 1L3, Canada
| | - Jalila Chagraoui
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Iman Fares
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Marie-Eve Bordeleau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Philippe Leboulch
- Atomic and Alternative Energy Commission, Université Paris-Sud, Fontenay-aux-Roses, Paris, France.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Connie Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver BC V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver BC V6T 1Z4, Canada.,Department of Medicine, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Richard Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver BC V5Z 1L3, Canada.,Department of Medicine, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res 2018; 14:299-304. [PMID: 28721811 DOI: 10.2174/1567202614666170718092010] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. METHODS In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. RESULTS In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. CONCLUSION Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, NY. United States
| |
Collapse
|
10
|
The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018. [PMID: 29523769 DOI: 10.1042/bst20170121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a result of the advancing age of the global population and the progressive increase in lifespan, neurodegenerative disorders continue to increase in incidence throughout the world. New strategies for neurodegenerative disorders involve the novel pathways of the mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) that can modulate pathways of apoptosis and autophagy. The pathways of mTOR and SIRT1 are closely integrated. mTOR forms the complexes mTOR Complex 1 and mTOR Complex 2 and can impact multiple neurodegenerative disorders that include Alzheimer's disease, Huntington's disease, and Parkinson's disease. SIRT1 can control stem cell proliferation, block neuronal injury through limiting programmed cell death, drive vascular cell survival, and control clinical disorders that include dementia and retinopathy. It is important to recognize that oversight of programmed cell death by mTOR and SIRT1 requires a fine degree of precision to prevent the progression of neurodegenerative disorders. Additional investigations and insights into these pathways should offer effective and safe treatments for neurodegenerative disorders.
Collapse
|
11
|
Maiese K. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer's Disease. Curr Neurovasc Res 2018; 15:367-371. [PMID: 30484407 PMCID: PMC6538488 DOI: 10.2174/1567202616666181128120003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
The world's population continues to age at a rapid pace. By the year 2050, individuals over the age of 65 will account for sixteen percent of the world's population and life expectancy will increase well over eighty years of age. Accompanied by the aging of the global population is a significant rise in Non-Communicable Diseases (NCDs). Neurodegenerative disorders will form a significant component for NCDs. Currently, dementia is the 7th leading cause of death and can be the result of multiple causes that include diabetes mellitus, vascular disease, and Alzheimer's Disease (AD). AD may represent at least sixty percent of these cases. Current treatment for these disorders is extremely limited to provide only some symptomatic relief at present. Sirtuins and in particular, the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), represent innovative strategies for the treatment of cognitive loss. New work has revealed that SIRT1 provides protection against memory loss through mechanisms that involve oxidative stress, Aβ toxicity, neurofibrillary degeneration, vascular injury, mitochondrial dysfunction, and neuronal loss. In addition, SIRT1 relies upon other avenues that can include trophic factors, such as erythropoietin, and signaling pathways, such as Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4). Yet, SIRT1 can have detrimental effects as well that involve tumorigenesis and blockade of stem cell differentiation and maturation that can limit reparative processes for cognitive loss. Further investigations with sirtuins and SIRT1 should be able to capitalize upon these novel targets for dementia and cognitive loss.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
12
|
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15:81-91. [PMID: 29557749 PMCID: PMC6021214 DOI: 10.2174/1567202615666180319151244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND With the global increase in lifespan expectancy, neurodegenerative disorders continue to affect an ever-increasing number of individuals throughout the world. New treatment strategies for neurodegenerative diseases are desperately required given the lack of current treatment modalities. METHODS Here, we examine novel strategies for neurodegenerative disorders that include circadian clock genes, non-coding Ribonucleic Acids (RNAs), and the mammalian forkhead transcription factors of the O class (FoxOs). RESULTS Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to potentially limit or remove the significant disability and death associated with neurodegenerative disorders. Each of these pathways has an intimate relationship with the programmed death pathways of autophagy and apoptosis and share a common link to the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell development and neuronal differentiation and offer protection against vascular disease such as atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate pathways of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative disorders. CONCLUSION Continued work with circadian clock genes, non-coding RNAs, and FoxOs can offer new prospects and hope for the development of vital strategies for the treatment of neurodegenerative diseases. These innovative investigative avenues have the potential to significantly limit disability and death from these devastating disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
13
|
Direct comparison of distinct naive pluripotent states in human embryonic stem cells. Nat Commun 2017; 8:15055. [PMID: 28429706 PMCID: PMC5413953 DOI: 10.1038/ncomms15055] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 02/23/2017] [Indexed: 11/17/2022] Open
Abstract
Until recently, human embryonic stem cells (hESCs) were shown to exist in a state of primed pluripotency, while mouse embryonic stem cells (mESCs) display a naive or primed pluripotent state. Here we show the rapid conversion of in-house-derived primed hESCs on mouse embryonic feeder layer (MEF) to a naive state within 5–6 days in naive conversion media (NCM-MEF), 6–10 days in naive human stem cell media (NHSM-MEF) and 14–20 days using the reverse-toggle protocol (RT-MEF). We further observe enhanced unbiased lineage-specific differentiation potential of naive hESCs converted in NCM-MEF, however, all naive hESCs fail to differentiate towards functional cell types. RNA-seq analysis reveals a divergent role of PI3K/AKT/mTORC signalling, specifically of the mTORC2 subunit, in the different naive hESCs. Overall, we demonstrate a direct evaluation of several naive culture conditions performed in the same laboratory, thereby contributing to an unbiased, more in-depth understanding of different naive hESCs. Human embryonic stem cells (hESCs) in culture display a state of primed pluripotency, but recent protocols have been developed that enable hESCs to adopt a naive-like pluripotent state. Here the authors perform a side-by-side comparison of methods used to culture naive hESCs and confirm the role of PI3K/AKT/mTORC signalling in facilitating the induction of naive pluripotency.
Collapse
|
14
|
Maiese K. Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR, AMPK, and Erythropoietin. Curr Neurovasc Res 2017; 14:184-189. [PMID: 28294062 PMCID: PMC5478459 DOI: 10.2174/1567202614666170313105337] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/26/2017] [Accepted: 03/03/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transient receptor potential (TRP) channels are a superfamily of ion channels termed after the trp gene in Drosophila that are diverse in structure and control a wide range of biological functions including cell development and growth, thermal regulation, and vascular physiology. Of significant interest is the transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor, also known as the capsaicin receptor and the vanilloid receptor 1, that is a non-selective cation channel sensitive to a host of external stimuli including capsaicin and camphor, venoms, acid/basic pH changes, and temperature. METHODS Given the multiple modalities that TRPV1 receptors impact in the body, we examined and discussed the role of these receptors in vasomotor control, metabolic disorders, cellular injury, oxidative stress, apoptosis, autophagy, and neurodegenerative disorders and their overlap with other signal transduction pathways that impact trophic factors. RESULTS Surprisingly, TRPV1 receptors do not rely entirely upon calcium signaling to affect cellular biology, but also have a close relationship with the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and protein kinase B (Akt) that have roles in pain sensitivity, stem cell development, cellular survival, and cellular metabolism. These pathways with TRPV1 converge in the signaling of growth factors with recent work highlighting a relationship with erythropoietin (EPO). Angiogenesis and endothelial tube formation controlled by EPO requires, in part, the activation of TRPV1 receptors in conjunction with Akt and AMPK pathways. CONCLUSION TRPV1 receptors could prove to become vital to target disorders of vascular origin and neurodegeneration. Broader and currently unrealized implementations for both EPO and TRPV1 receptors can be envisioned for for the development of novel therapeutic strategies in multiple systems of the body.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
15
|
Maiese K. Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease. Curr Neurovasc Res 2017; 14:82-88. [PMID: 27897112 PMCID: PMC5383524 DOI: 10.2174/1567202613666161129112822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023]
Abstract
Noncommunicable diseases (NCDs) contribute to a significant amount of disability and death in the world. Of these disorders, vascular disease is ranked high, falls within the five leading causes of death, and impacts multiple other disease entities such as those of the cardiac system, nervous system, and metabolic disease. Targeting the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) pathway and the modulation of micro ribonucleic acids (miRNAs) may hold great promise for the development of novel strategies for the treatment of vascular disease since each of these pathways are highly relevant to cardiac and nervous system disorders as well as to metabolic dysfunction. SIRT1 is vital in determining the course of stem cell development and the survival, metabolism, and life span of differentiated cells that are overseen by both autophagy and apoptosis. SIRT1 interfaces with a number of pathways that involve forkhead transcription factors, mechanistic of rapamycin (mTOR), AMP activated protein kinase (AMPK) and Wnt1 inducible signaling pathway protein 1 (WISP1) such that the level of activity of SIRT1 can become a critical determinant for biological and clinical outcomes. The essential fine control of SIRT1 is directly tied to the world of non-coding RNAs that ultimately oversee SIRT1 activity to either extend or end cellular survival. Future studies that can further elucidate the crosstalk between SIRT1 and non-coding RNAs should serve well our ability to harness the power of SIRT1 and non-coding RNAs for the treatment of vascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
16
|
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82:1245-1266. [PMID: 26469771 PMCID: PMC5061806 DOI: 10.1111/bcp.12804] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are significantly increasing in incidence as the age of the global population continues to climb with improved life expectancy. At present, more than 30 million individuals throughout the world are impacted by acute and chronic neurodegenerative disorders with limited treatment strategies. The mechanistic target of rapamycin (mTOR), also known as the mammalian target of rapamycin, is a 289 kDa serine/threonine protein kinase that offers exciting possibilities for novel treatment strategies for a host of neurodegenerative diseases that include Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, stroke and trauma. mTOR governs the programmed cell death pathways of apoptosis and autophagy that can determine neuronal stem cell development, precursor cell differentiation, cell senescence, cell survival and ultimate cell fate. Coupled to the cellular biology of mTOR are a number of considerations for the development of novel treatments involving the fine control of mTOR signalling, tumourigenesis, complexity of the apoptosis and autophagy relationship, functional outcome in the nervous system, and the intimately linked pathways of growth factors, phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation two homologue one (Saccharomyces cerevisiae) (SIRT1) and others. Effective clinical translation of the cellular signalling mechanisms of mTOR offers provocative avenues for new drug development in the nervous system tempered only by the need to elucidate further the intricacies of the mTOR pathway.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey, 07101, USA.
| |
Collapse
|
17
|
Orellana AMM, Vasconcelos AR, Leite JA, de Sá Lima L, Andreotti DZ, Munhoz CD, Kawamoto EM, Scavone C. Age-related neuroinflammation and changes in AKT-GSK-3β and WNT/ β-CATENIN signaling in rat hippocampus. Aging (Albany NY) 2016; 7:1094-111. [PMID: 26647069 PMCID: PMC4712335 DOI: 10.18632/aging.100853] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aging is a multifactorial process associated with an increased susceptibility to neurodegenerative disorders which can be related to chronic inflammation. Chronic inflammation, however, can be characterized by the persistent elevated glucocorticoid (GCs) levels, activation of the proinflammatory transcription factor NF-кB, as well as an increase in cytokines. Interestingly, both NF-кB and cytokines can be even modulated by Glycogen Synthase Kinase 3 beta (GSK-3β) activity, which is a key protein that can intermediate inflammation and metabolism, once it has a critical role in AKT signaling pathway, and can also intermediate WNT/β-CATENIN signaling pathway. The aim of this study was to verify age-related changes in inflammatory status, as well as in the AKT and WNT signaling pathways. Results showed an age-related increase in neuroinflammation as indicated by NF-кB activation, TNF-α and GCs increased levels, a decrease in AKT activation and an increase in GSK-3β activity in both 12- and 24- month old animals. Aging also seems to induce a progressive decrease in canonical WNT/β-CATENIN signaling pathway once there is a decrease in DVL-2 levels and in the transcription of Axin2 gene. Little is known about the DVL-2 regulation as well as its roles in WNT signaling pathway, but for the first time it was suggested that DVL-2 expression can be changed along aging.
Collapse
Affiliation(s)
- Ana Maria Marques Orellana
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Diana Zukas Andreotti
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| |
Collapse
|
18
|
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11:372-85. [PMID: 27127460 PMCID: PMC4828986 DOI: 10.4103/1673-5374.179032] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Throughout the globe, diabetes mellitus (DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder. DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy. The mechanistic target of rapamycin (mTOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM. mTOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis, insulin resistance, insulin secretion, stem cell proliferation and differentiation, pancreatic β-cell function, and programmed cell death with apoptosis and autophagy. mTOR is central element for the protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), Wnt1 inducible signaling pathway protein 1 (WISP1), and growth factors. As a result, mTOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease. Future studies directed to elucidate the delicate balance mTOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.
Collapse
|
19
|
Maiese K. Erythropoietin and mTOR: A "One-Two Punch" for Aging-Related Disorders Accompanied by Enhanced Life Expectancy. Curr Neurovasc Res 2016; 13:329-340. [PMID: 27488211 PMCID: PMC5079807 DOI: 10.2174/1567202613666160729164900] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Life expectancy continues to increase throughout the world, but is accompanied by a rise in the incidence of non-communicable diseases. As a result, the benefits of an increased lifespan can be limited by aging-related disorders that necessitate new directives for the development of effective and safe treatment modalities. With this objective, the mechanistic target of rapamycin (mTOR), a 289-kDa serine/threonine protein, and its related pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), proline rich Akt substrate 40 kDa (PRAS40), AMP activated protein kinase (AMPK), Wnt signaling, and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), have generated significant excitement for furthering novel therapies applicable to multiple systems of the body. Yet, the biological and clinical outcome of these pathways can be complex especially with oversight of cell death mechanisms that involve apoptosis and autophagy. Growth factors, and in particular erythropoietin (EPO), are one avenue under consideration to implement control over cell death pathways since EPO can offer potential treatment for multiple disease entities and is intimately dependent upon mTOR signaling. In experimental and clinical studies, EPO appears to have significant efficacy in treating several disorders including those involving the developing brain. However, in mature populations that are affected by aging-related disorders, the direction for the use of EPO to treat clinical disease is less clear that may be dependent upon a number of factors including the understanding of mTOR signaling. Continued focus upon the regulatory elements that control EPO and mTOR signaling could generate critical insights for targeting a broad range of clinical maladies.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
20
|
MicroRNAs and SIRT1: A Strategy for Stem Cell Renewal and Clinical Development? JOURNAL OF TRANSLATIONAL SCIENCE 2015; 1:55-57. [PMID: 26561536 PMCID: PMC4638174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Small non-coding ribonucleic acids (RNAs), known as microRNAs (miRNAs), are now becoming recognized as significant agents that can affect the onset and progression of numerous disorders throughout the body. In particular, miRNAs also may determine stem cell renewal and differentiation. Intimately tied to the ability of miRNAs to govern stem cell proliferation are the proliferative pathways of silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the cell survival mechanisms of autophagy that can be coupled to the activity of the mechanistic target of rapamycin (mTOR). Targeting miRNAs that oversee SIRT1 activity offers interesting prospects for the translation of these pathways into efficacious clinical treatment programs for a host of disorders. Yet, as work in this area progresses, a number of challenges unfold that impact whether manipulation of non-coding RNAs and SIRT1 can finely guide stem cell renewal and differentiation to reach successful clinical outcomes.
Collapse
|
21
|
Yu G, Huang B, Chen G, Mi Y. Phosphatidylethanolamine-binding protein 4 promotes lung cancer cells proliferation and invasion via PI3K/Akt/mTOR axis. J Thorac Dis 2015; 7:1806-16. [PMID: 26623104 PMCID: PMC4635298 DOI: 10.3978/j.issn.2072-1439.2015.10.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/11/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND While phosphatidylethanolamine-binding protein 4 (PEBP4) is a key factor in the malignant proliferation and metastasis of tumor cells, the exact regulatory network governing its roles remains unclear. This study was designed to investigate the effect of PEBP4 on PI3K/Akt/mTOR pathway and explore its molecular network that governs the proliferation and metastasis of tumor cells. METHODS After the recombinant plasmid pcDNA3.1-PEBP4 was constructed, the recombinant plasmid pcDNA3.1-PEBP4 and PEBP4-targeting siRNA were transfected into lung cancer HCC827 cell line. The expressions of PI3K/Akt/mTOR pathway components in HCC827 cells in each group were determined using Western blotting. In the HCC827 cells, the effect of PI3K pathway inhibitor LY294002 on the expressions of PI3K/Akt/mTOR pathway components under the effect of PEBP4 was determined using Western blotting, and the effects of LY294002 on the cell viability, proliferation, and migration capabilities under the overexpression of PEBP4 were determined using MTT method, flow cytometry, and Transwell migration assay. Furthermore, the effect of mTOR inhibitor rapamycin (RAPA) on the expressions of PI3K/Akt/mTOR pathway components under the effect of PEBP4 was determined using Western blotting, and the effects of RAPA on the cell viability, proliferation, and migration capabilities under the overexpression of PEBP4 were determined using MTT method, flow cytometry, and Transwell migration assay. RESULTS As shown by Western blotting, the protein expressions of p-Akt and phosphorylated mTOR (p-mTOR) were significantly higher in the pcDNA3.1-PEBP4-transfected group than in the normal control group and PEBP4 siRNA group (P<0.05); furthermore, the protein expressions of p-Akt and p-mTOR significantly decreased in the PEBP4 targeting siRNA-transfected group (P<0.05). Treatment with LY294002 significantly inhibited the protein expressions of p-Akt and p-mTOR in HCC827 cells (P<0.05). In contrast, treatment with RAPA only significantly inhibited the protein expression of p-mTOR (P<0.05). As shown by MTT, flow cytometry, and Transwell migration assay, both LY294002 and RAPA could significantly lower the viability of HCC827 cells and inhibit their proliferation and invasion (P<0.05); meanwhile, they could reverse the effect of PEBP4 in promoting the proliferation and migration of HCC827 cells (P<0.05). CONCLUSIONS The overexpression of PEBP4 increases the phosphorylation levels of Akt and mTOR in lung cancer cells. The PI3K/Akt/mTOR signaling axis may be a key molecular pathway via which PEBP4 promotes the proliferation and invasion of non-small cell lung cancer (NSCLC) cells; also, it may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Guoqiang Chen
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Yedong Mi
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| |
Collapse
|