1
|
Ara T, Hashimoto D, Hayase E, Noizat C, Kikuchi R, Hasegawa Y, Matsuda K, Ono S, Matsuno Y, Ebata K, Ogasawara R, Takahashi S, Ohigashi H, Yokoyama E, Matsuo K, Sugita J, Onozawa M, Okumura R, Takeda K, Teshima T. Intestinal goblet cells protect against GVHD after allogeneic stem cell transplantation via Lypd8. Sci Transl Med 2021; 12:12/550/eaaw0720. [PMID: 32611682 DOI: 10.1126/scitranslmed.aaw0720] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/07/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Graft-versus-host disease (GVHD) and infection are major obstacles to successful allogeneic hematopoietic stem cell transplantation (HSCT). Intestinal goblet cells form the mucus layers, which spatially segregate gut microbiota from host tissues. Although it is well known that goblet cell loss is one of the histologic features of GVHD, effects of their loss in pathophysiology of GVHD remain to be elucidated. In mouse models of allogeneic HSCT, goblet cells in the colon were significantly reduced, resulting in disruption of the inner mucus layer of the colon and increased bacterial translocation into colonic mucosa. Pretransplant administration of interleukin-25 (IL-25), a growth factor for goblet cells, protected goblet cells against GVHD, prevented bacterial translocation, reduced plasma concentrations of interferon-γ (IFN-γ) and IL-6, and ameliorated GVHD. The protective role of IL-25 was dependent on Lypd8, an antimicrobial molecule produced by enterocytes in the colon that suppresses motility of flagellated bacteria. In clinical colon biopsies, low numbers of goblet cells were significantly associated with severe intestinal GVHD, increased transplant-related mortality, and poor survival after HSCT. Goblet cell loss is associated with poor transplant outcome, and administration of IL-25 represents an adjunct therapeutic strategy for GVHD by protecting goblet cells.
Collapse
Affiliation(s)
- Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Eiko Hayase
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Clara Noizat
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ryo Kikuchi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yuta Hasegawa
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kana Matsuda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shoko Ono
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Ko Ebata
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Reiki Ogasawara
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shuichiro Takahashi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Emi Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Junichi Sugita
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan.
| |
Collapse
|
2
|
Lee SK. Usefulness and Future Prospects of Confocal Laser Endomicroscopy for Gastric Premalignant and Malignant Lesions. Clin Endosc 2015; 48:511-515. [PMID: 26668797 PMCID: PMC4676654 DOI: 10.5946/ce.2015.48.6.511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022] Open
Abstract
Confocal laser endomicroscopy (CLE) is a new technology enabling endoscopists to visualize tissue at the cellular level. CLE has the fundamental potential to provide a histologic diagnosis, and may theoretically replace or reduce the need for performing biopsy for histology. The clinical benefits of CLE are more obvious in esophageal disease, including Barrett's esophagus. Currently, this technology has been adapted to the diagnosis and surveillance of Barrett's esophagus and related neoplasia. Standard white light endoscopy is the primary tool for gastric cancer screening. Currently, the only method available to precisely diagnose these lesions is upper endoscopy with an appropriate biopsy. A recent study showed that CLE could characterize dysplasia or cancer and identify the risk factors for gastric cancer, such as intestinal metaplasia and the presence of Helicobacter pylori in vivo, although fewer studies on CLE were performed on the stomach than on Barrett's esophagus and other esophageal diseases. However, the application of CLE to routine clinical endoscopy continues to be refined. This review focused on the usefulness and future prospects of CLE for gastric premalignant and malignant lesions.
Collapse
Affiliation(s)
- Sang Kil Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Abstract
White light endoscopy has proven to be a very powerful tool in oncology. There is still, however, a need for better endoscopic techniques to overcome the current limitations of white light optics. New technologies that allow higher sensitivity, improved microanatomy and molecular characterization have been available for in vitro microscopy and are now being translated into in vivo endoscopy. Endoscopic molecular imaging is still in its infancy but holds the promise for enhancing sensitivity for early lesions, thus allowing earlier diagnosis and enabling early image-guided endoscopic intervention. A key feature of endoscopic molecular imaging is its increased sensitivity and specificity, which will be illustrated in this article, as well as describing perspectives on its future use in oncologic surgery.
Collapse
Affiliation(s)
- Towhid Ali
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1088, USA
| | | | | |
Collapse
|
4
|
Tomizawa Y, Iyer PG, Wongkeesong LM, Buttar NS, Lutzke LS, Wu TT, Wang KK. Assessment of the diagnostic performance and interobserver variability of endocytoscopy in Barrett’s esophagus: A pilot ex-vivo study. World J Gastroenterol 2013; 19:8652-8658. [PMID: 24379583 PMCID: PMC3870511 DOI: 10.3748/wjg.v19.i46.8652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/07/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate a classification of endocytoscopy (ECS) images in Barrett’s esophagus (BE) and evaluate its diagnostic performance and interobserver variability.
METHODS: ECS was applied to surveillance endoscopic mucosal resection (EMR) specimens of BE ex-vivo. The mucosal surface of specimen was stained with 1% methylene blue and surveyed with a catheter-type endocytoscope. We selected still images that were most representative of the endoscopically suspect lesion and matched with the final histopathological diagnosis to accomplish accurate correlation. The diagnostic performance and inter-observer variability of the new classification scheme were assessed in a blinded fashion by physicians with expertise in both BE and ECS and inexperienced physicians with no prior exposure to ECS.
RESULTS: Three staff physicians and 22 gastroenterology fellows classified eight randomly assigned unknown still ECS pictures (two images per each classification) into one of four histopathologic categories as follows: (1) BEC1-squamous epithelium; (2) BEC2-BE without dysplasia; (3) BEC3-BE with dysplasia; and (4) BEC4-esophageal adenocarcinoma (EAC) in BE. Accuracy of diagnosis in staff physicians and clinical fellows were, respectively, 100% and 99.4% for BEC1, 95.8% and 83.0% for BEC2, 91.7% and 83.0% for BEC3, and 95.8% and 98.3% for BEC4. Interobserver agreement of the faculty physicians and fellows in classifying each category were 0.932 and 0.897, respectively.
CONCLUSION: This is the first study to investigate classification system of ECS in BE. This ex-vivo pilot study demonstrated acceptable diagnostic accuracy and excellent interobserver agreement.
Collapse
|