1
|
Lotfi M, Maharati A, Hamidi AA, Taghehchian N, Moghbeli M. MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients. Mutat Res 2024; 829:111874. [PMID: 38986233 DOI: 10.1016/j.mrfmmm.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhang M, Dang P, Liu Y, Qiao B, Sun Z. Noncoding RNAs in pyroptosis and cancer progression: Effect, mechanism, and clinical application. Front Immunol 2022; 13:982040. [PMID: 36059539 PMCID: PMC9428448 DOI: 10.3389/fimmu.2022.982040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cell death is generally classified into two categories: regulated cell death (RCD) and accidental cell death (ACD). In particular, RCD is a kind of genetically controlled process, including programmed apoptotic death and programmed necrotic death. Pyroptosis, an inflammatory form of programmed necrotic death, causes inflammation in cells. The influence of pyroptosis on tumor is complicated. On the one hand, pyroptosis triggers antitumor response. On the other hand, pyroptosis may induce carcinogenesis. Pyroptosis is initiated by various factors, especially non-coding RNAs. In this review, we discuss the effects of ncRNAs on pyroptosis and the mechanisms by which ncRNAs initiate pyroptosis. Moreover, we introduce the influence of ncRNA on tumor resistance via pyroptosis. Additionally, we summarize how ncRNA-associated pyroptosis modulates the tumor microenvironment (TME) and thereafter triggers antitumor immune response. Finally, pyroptosis-related ncRNAs are promising diagnostic and immunotherapeutic biomarkers and therapeutic targets
Collapse
Affiliation(s)
- Menghui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zhenqiang Sun, ; Bingbing Qiao, ; Yang Liu,
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhenqiang Sun, ; Bingbing Qiao, ; Yang Liu,
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhenqiang Sun, ; Bingbing Qiao, ; Yang Liu,
| |
Collapse
|
3
|
Feng R, Li J, Xuan W, Liu H, Cheng D, Wang G. An Autophagy-Related Gene-Based Prognostic Risk Signature for Hepatocellular Carcinoma: Construction and Validation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5770228. [PMID: 34691238 PMCID: PMC8529386 DOI: 10.1155/2021/5770228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/18/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer. Treatment is dramatically difficult due to its high complexity and poor prognosis. Due to the disclosed dual functions of autophagy in cancer development, understanding autophagy-related genes devotes into novel biomarkers for HCC. METHODS Differential expression of genes in normal and tumor groups was analyzed to acquire autophagy-related genes in HCC. These genes were subjected to GO and KEGG pathway analyses. Genes were then screened by univariate regression analysis. The screened genes were subjected to multivariate Cox regression analysis to build a prognostic model. The model was validated by the ICGC validation set. RESULTS To sum up, 42 differential genes relevant to autophagy were screened by differential expression analysis. Enrichment analysis showed that they were mainly enriched in pathways including regulation of autophagy and cell apoptosis. Genes were screened by univariate analysis and multivariate Cox regression analysis to build a prognostic model. The model constituted 6 feature genes: EIF2S1, BIRC5, SQSTM1, ATG7, HDAC1, and FKBP1A. Validation confirmed the accuracy and independence of this model in predicting the HCC patient's prognosis. CONCLUSION A total of 6 feature genes were identified to build a prognostic risk model. This model is conducive to investigating interplay between autophagy-related genes and HCC prognosis.
Collapse
Affiliation(s)
- Rui Feng
- Department of International Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou City, Zhejiang Province 310000, China
| | - Jian Li
- Department of Interventional Medicine, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, China
| | - Weiling Xuan
- Department of Radiology, Xixi Hospital of Hangzhou, Hangzhou City, Zhejiang Province 310000, China
| | - Hanbo Liu
- Department of Vascular Surgery-Center for Vascular Intervention, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou City, Zhejiang Province 310000, China
| | - Dexin Cheng
- Department of Vascular Surgery-Center for Vascular Intervention, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou City, Zhejiang Province 310000, China
| | - Guowei Wang
- Department of Radiology, Xixi Hospital of Hangzhou, Hangzhou City, Zhejiang Province 310000, China
| |
Collapse
|
4
|
Liu C, Wu H, Mao Y, Chen W, Chen S. Exosomal microRNAs in hepatocellular carcinoma. Cancer Cell Int 2021; 21:254. [PMID: 33964930 PMCID: PMC8106840 DOI: 10.1186/s12935-021-01941-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common malignant tumors worldwide and the fourth leading cause of cancer-related deaths. The prognosis of hepatocellular carcinoma patients is extremely poor due to the occult onset and high metastasis of hepatocellular carcinoma. Therefore, biomarkers with high specificity and sensitivity are of great importance in early screening, diagnosis prognosis, and treatment of hepatocellular carcinoma patients. Exosomes are tiny vesicles secreted by various types of cells, which can serve as mediators of intercellular communication to regulate the tumor microenvironment, and play a key role in the occurrence, development, prognosis, monitor and treatment of hepatocellular carcinoma. As microRNA deliverer, exosomes are involved in multiple life activities by regulating target genes of recipient cells such as proliferation, invasion, metastasis and apoptosis of cancer cells. In this review, we summarized the composition, active mechanism and function of exosomal microRNAs in hepatocellular carcinoma, and elaborated on their potential application value of early diagnosis and treatment in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chenbin Liu
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Han Wu
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Yinqi Mao
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Wei Chen
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
5
|
Huang X, Sun L, Wen S, Deng D, Wan F, He X, Tian L, Liang L, Wei C, Gao K, Fu Q, Li Y, Jiang J, Zhai R, He M. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. Cancer Sci 2020; 111:3338-3349. [PMID: 32506598 PMCID: PMC7469810 DOI: 10.1111/cas.14516] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomal long noncoding RNA (lncRNA) has been found to be associated with the development of cancers. However, the expression characteristics and the biological roles of exosomal lncRNAs in hepatocellular carcinoma (HCC) remain unknown. Here, by RNA sequencing, we found 9440 mRNAs and 8572 lncRNAs were differentially expressed (DE-) in plasma exosomes between HCC patients and healthy controls. Exosomal DE-lncRNAs displayed higher expression levels and tissue specificity, lower expression variability and splicing efficiency than DE-mRNAs. Six candidate DE-lncRNAs (fold change 6 or more, P ≤ .01) were high in HCC cells and cell exosomes. The knockdown of these candidate DE-lncRNAs significantly affected the migration, proliferation, and apoptosis in HCC cells. In particular, a novel DE-lncRNA, RP11-85G21.1 (lnc85), promoted HCC cellular proliferation and migration by targeted binding and regulating of miR-324-5p. More importantly, the level of serum lnc85 was highly expressed in both Alpha-fetoprotein (AFP)-positive and AFP-negative HCC patients and allowed distinguishing AFP-negative HCC from healthy control and liver cirrhosis (area under the receiver operating characteristic curve, 0.869; sensitivity, 80.0%; specificity, 76.5%) with high accuracy. Our finding offers a new insight into the association between the dysregulation of exosomal lncRNA and HCC, suggesting that lnc85 could be a potential biomarker of HCC.
Collapse
Affiliation(s)
- Xuejing Huang
- School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Medical University Laboratory Animal CenterNanningChina
| | - Liyuan Sun
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Sha Wen
- Guangxi Medical University Laboratory Animal CenterNanningChina
| | - Deli Deng
- Department of Infectious DiseasesThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Fengjie Wan
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Xiao He
- School of Public HealthGuilin Medical UniversityGuilinChina
| | - Li Tian
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Lifang Liang
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Chunmeng Wei
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Kaiping Gao
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐ BioresourcesNanningChina
| | - Yasi Li
- School of Global Public HealthNew York UniversityNew YorkNYUSA
| | - Jianning Jiang
- Department of Infectious DiseasesThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rihong Zhai
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
- Carson Cancer CenterShenzhen UniversityShenzhenChina
| | - Min He
- School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Medical University Laboratory Animal CenterNanningChina
- Key Laboratory of High‐Incidence Tumor Prevention and Treatment (Guangxi Medical University)Ministry of EducationNanningChina
| |
Collapse
|
6
|
Wang A, Meng J, Liu H, Li C, Zhou Z. Long non-coding RNA BCAR4 promotes liver cancer progression by regulating proliferation, migration and invasion. Oncol Lett 2020; 20:2779-2787. [PMID: 32782595 PMCID: PMC7400972 DOI: 10.3892/ol.2020.11826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Liver cancer (LC) is one of the primary contributors of cancer-associated death worldwide. Long non-coding RNAs (lncRNAs) have been shown to participate in almost every aspect of cell biology and serve fundamental roles in carcinogenesis and cancer progression, including in LC. However, the clinical significance and functional role of the lncRNA breast cancer anti-estrogen resistance 4 (BCAR4) in LC have not yet been identified. The present study measured the expression levels of BCAR4 in LC cells and tissues, and discovered that BCAR4 was upregulated in LC tissues compared with adjacent normal tissues. Furthermore, high BCAR4 expression was associated with the presence of multiple tumors and advanced Tumor-Node-Metastasis stages (III/IV). Survival analysis found that high BCAR4 expression indicated poor overall survival (OS) and progression-free survival (PFS). By analyzing the risk factors of poor OS and PFS using univariate analysis and multivariate analysis, high BCAR4 expression was revealed to be an independent risk factor of poor prognosis. In addition, the role of BCAR4 was further investigated in vitro, which revealed overexpression of BCAR4 to markedly promote the proliferation, migration and invasion of LC cells. Conversely, the loss of BCAR4 expression repressed the proliferation, migration and invasion of LC cells. In conclusion, BCAR4 is overexpressed in LC and is associated with LC progression. Therefore, BCAR4 may be used as a potential prognostic marker in LC.
Collapse
Affiliation(s)
- Aiyao Wang
- Department of Gastroenterology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Meng
- Department of Gastroenterology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Liu
- Department of Gastroenterology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chen Li
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Chi C, Li M, Hou W, Chen Y, Zhang Y, Chen J. Long Noncoding RNA SNHG7 Activates Wnt/β-Catenin Signaling Pathway in Cervical Cancer Cells by Epigenetically Silencing DKK1. Cancer Biother Radiopharm 2020; 35:329-337. [PMID: 32275170 DOI: 10.1089/cbr.2019.3004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Cervical cancer (CC) ranks fourth in cancers that resulted in death among women, accumulating the attention of researchers. It has been ascertained that long noncoding RNAs (lncRNAs) are crucial players in the pathological processes of a host of cancers. And, SNHG7 has been reported to enhance the occurrence of various cancers; however, its function in CC sustains obscure. Aim of the Study: This study explored the function of SNHG7 in CC and further investigates the specific molecular mechanism of SNHG7 in regulating CC. Methods: The levels of SNHG7 in CC cells were reflected by quantitative real-time polymerase chain reaction. The functions of SNHG7 on CC tumorigenesis were explored by colony formation, CCK-8 (Cell Counting Kit-8), EdU (ethynyl deoxyuridine), and Western blot assays. The influences of SNHG7 depletion on the binding of EZH2 to DKK1 promoter and H3K27me3 occupancy in DKK1 promoter were studied by chromatin immunoprecipitation assay. Results: SNHG7 was conspicuously higher expressed in CC cells. Knockdown of SNHG7 was detected to ameliorate the malignant behaviors of CC cells. Importantly, the contribution of SNHG7 to CC development was relied on activated Wnt pathway through DDK1-mediated manner. Furthermore, it was confirmed that SNHG7 silencing weakened the binding of EZH2 to DKK1 promoter as well as the occupancy of H3K27me3 in DKK1 promoter. Conclusions: SNHG7 epigenetically silences DKK1 to exacerbate the malignancy of CC via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chi Chi
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Min Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Wenjie Hou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jie Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
8
|
Zheng Y, Nie P, Xu S. Long noncoding RNA linc00467 plays an oncogenic role in hepatocellular carcinoma by regulating the miR-18a-5p/NEDD9 axis. J Cell Biochem 2020; 121:3135-3144. [PMID: 31916278 DOI: 10.1002/jcb.29581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/09/2019] [Indexed: 01/01/2023]
Abstract
Increasing evidence has shown that numerous long noncoding RNAs (lncRNAs) play critical roles in tumorigenesis. Herein, we investigated the biological role of lncRNA linc00467 in the cancer biology of hepatocellular carcinoma (HCC). We observed that linc00467 was upregulated in HCC tissues and cells. Silencing of linc00467 using small interfering RNA interference significantly inhibited the growth and motility of HCC cells, and increased cell apoptosis through regulating the Bcl-2/Bax axis and the caspase cascade, suggesting that linc00467 exerted oncogenic functions in the progression of HCC. Moreover, we found that linc00467 could target miR-18a-5p, and NEDD9 was a target for miR-18a-5p in HCC cells. Furthermore, either the miR-18a-5p inhibitor or upregulation of NEDD9 could recover the inhibitory effects caused by silencing of linc00467. In conclusion, our data highlighted the oncogenic role of linc00467 in HCC progression by regulating the miR-18a-5p/NEDD9 axis.
Collapse
Affiliation(s)
- Yuanwen Zheng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peihua Nie
- Department of Ophthalmology and otorhinolaryngology, Shandong Provincial Third Hospital, Jinan, China
| | - Shifeng Xu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
9
|
Long J, Chen P, Lin J, Bai Y, Yang X, Bian J, Lin Y, Wang D, Yang X, Zheng Y, Sang X, Zhao H. DNA methylation-driven genes for constructing diagnostic, prognostic, and recurrence models for hepatocellular carcinoma. Am J Cancer Res 2019; 9:7251-7267. [PMID: 31695766 PMCID: PMC6831284 DOI: 10.7150/thno.31155] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, we performed a comprehensively analysis of gene expression and DNA methylation data to establish diagnostic, prognostic, and recurrence models for hepatocellular carcinoma (HCC). Methods: We collected gene expression and DNA methylation datasets for over 1,200 clinical samples. Integrated analyses of RNA-sequencing and DNA methylation data were performed to identify DNA methylation-driven genes. These genes were utilized in univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses to build a prognostic model. Recurrence and diagnostic models for HCC were also constructed using the same genes. Results: A total of 123 DNA methylation-driven genes were identified. Two of these genes (SPP1 and LCAT) were chosen to construct the prognostic model. The high-risk group showed a markedly unfavorable prognosis compared to the low-risk group in both training (HR = 2.81; P < 0.001) and validation (HR = 3.06; P < 0.001) datasets. Multivariate Cox regression analysis indicated the prognostic model to be an independent predictor of prognosis (P < 0.05). Also, the recurrence model successfully distinguished the HCC recurrence rate between the high-risk and low-risk groups in both training (HR = 2.22; P < 0.001) and validation (HR = 2; P < 0.01) datasets. The two diagnostic models provided high accuracy for distinguishing HCC from normal samples and dysplastic nodules in the training and validation datasets, respectively. Conclusions: We identified and validated prognostic, recurrence, and diagnostic models that were constructed using two DNA methylation-driven genes in HCC. The results obtained by integrating multidimensional genomic data offer novel research directions for HCC biomarkers and new possibilities for individualized treatment of patients with HCC.
Collapse
|
10
|
Liao X, Wang X, Huang K, Han C, Deng J, Yu T, Yang C, Huang R, Liu X, Yu L, Zhu G, Su H, Qin W, Zeng X, Han B, Han Q, Liu Z, Zhou X, Gong Y, Liu Z, Huang J, Winkler CA, O'Brien SJ, Ye X, Peng T. Integrated analysis of competing endogenous RNA network revealing potential prognostic biomarkers of hepatocellular carcinoma. J Cancer 2019; 10:3267-3283. [PMID: 31289599 PMCID: PMC6603367 DOI: 10.7150/jca.29986] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: The goal of our study is to identify a competing endogenous RNA (ceRNA) network using dysregulated RNAs between HCC tumors and the adjacent normal liver tissues from The Cancer Genome Atlas (TCGA) datasets, and to investigate underlying prognostic indicators in hepatocellular carcinoma (HCC) patients. Methods: All of the RNA- and miRNA-sequencing datasets of HCC were obtained from TCGA, and dysregulated RNAs between HCC tumors and the adjacent normal liver tissues were investigated by DESeq and edgeR algorithm. Survival analysis was used to confirm underlying prognostic indicators. Results: In the present study, we constructed a ceRNA network based on 16 differentially expressed genes (DEGs), 7 differentially expressed microRNAs and 34 differentially expressed long non-coding RNAs (DELs). Among these dysregulated RNAs, three DELs (AP002478.1, HTR2A-AS1, and ERVMER61-1) and six DEGs (enhancer of zeste homolog 2 [EZH2], kinesin family member 23 [KIF23], chromobox 2 [CBX2], centrosomal protein 55 [CEP55], cell division cycle 25A [CDC25A], and claspin [CLSPN]) were used for construct a prognostic signature for HCC overall survival (OS), and performed well in HCC OS (adjusted P<0.0001, adjusted hazard ratio = 2.761, 95% confidence interval = 1.838-4.147). Comprehensive survival analysis demonstrated that this prognostic signature may be act as an independent prognostic indicator of HCC OS. Functional assessment of these dysregulated DEGs in the ceRNA network and gene set enrichment of this prognostic signature suggest that both were enriched in the biological processes and pathways of the cell cycle, cell division and cell proliferation. Conclusions: Our current study constructed a ceRNA network for HCC, and developed a prognostic signature that may act as an independent indicator for HCC OS.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianlong Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, 537000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bowen Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Quanfa Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Evidence-based Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengtao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, People's Republic of China.,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Jianlv Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Cheryl A Winkler
- Basic Research Laboratory, CCR, NCI and Leidos Biomedical Research, Frederick National Laboratory, Frederick MD. 21702, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, 199004, Russia.,Oceanographic Center, Nova Southeastern University, Ft Lauderdale, 33004, FL, USA
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
11
|
Song W, Wang J, Liu H, Zhu C, Xu F, Qian L, Shen Z, Zhu J, Yin S, Qin J, Chen L, Wu D, Nashan B, Shan G, Xiao W, Zhou Y. Effects of LncRNA Lnc-LIF-AS on cell proliferation, migration and invasion in a human cervical cancer cell line. Cytokine 2019; 120:165-175. [PMID: 31085454 DOI: 10.1016/j.cyto.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
This study explored the effect of LncRNA Lnc-LIF-AS on cell proliferation, migration and invasion in the human cervical cancer (HCC) cell line SiHa. SiHa cells had the lowest expression of Lnc-LIF-AS in the 4 human cervical cancer cell lines (SiHa, ME-180, C-33A and HeLa) and were transfected and divided into the SiHa/con (transfected with pMIGRI) cell group, SiHa/Lnc-LIF-AS (transfected with pMIGRI-Lnc-LIF-AS) cell group, and SiHa/Lnc-LIF-AS-DN (transfected with pMIGRI-Lnc-LIF-AS-DN, in which the sequences overlapping with LIF mRNA was deleted) cell group. Overexpression of Lnc-LIF-AS could promote the proliferation, colony formation, invasion and migration in SiHa and ME-180 cells. And the low expression of Lnc-LIF-AS suppress the proliferation, colony formation invasion and migration in HeLa cells when the Lnc-LIF-AS expression has been suppressed. In the SiHa/Lnc-LIF-AS cells group, the cell cycle was mainly halted in the S phase and overexpression of Lnc-LIF-AS had no effect on the apoptosis of SiHa cells. Overexpression of Lnc-LIF-AS could promote the secretion of LIF in SiHa cells, and the supernatant from SiHa/Lnc-LIF-AS cells could promote cell proliferation in the SiHa/con cells. The STAT3 inhibitor could inhibit cell proliferation in the SiHa/Lnc-LIF-AS cells. The expression level of Lnc-LIF-AS in cervical cancer tissues was higher than that in normal tissues and the expression level of Lnc-LIF-AS was positively correlated with the level of LIF. In the SiHa/con and SiHa/Lnc-LIF-AS-DN cell groups, there were no significant differences in cell proliferation, cell migration and cell invasion. The overexpression of Lnc-LIF-AS can promote cell proliferation, migration and invasion in cervical cancer cells, and the core function domain of this lncRNA was located in the overlapping a 3'-UTR base sequence of LIF mRNA.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Hanyuan Liu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Chenchen Zhu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Fei Xu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Lili Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Zhen Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Jing Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Shuai Yin
- Organ Transplantation Center, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Jiwei Qin
- Organ Transplantation Center, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Liang Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dabao Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province 230001, China
| | - Björn Nashan
- Organ Transplantation Center, The First Affiliated Hospital of University of Science & Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Ge Shan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Weihua Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China.
| |
Collapse
|
12
|
Munoz JL, Walker ND, Mareedu S, Pamarthi SH, Sinha G, Greco SJ, Rameshwar P. Cycling Quiescence in Temozolomide Resistant Glioblastoma Cells Is Partly Explained by microRNA-93 and -193-Mediated Decrease of Cyclin D. Front Pharmacol 2019; 10:134. [PMID: 30853911 PMCID: PMC6395452 DOI: 10.3389/fphar.2019.00134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/05/2019] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a fatal malignancy of the central nervous system, commonly associated with chemoresistance. The alkylating agent Temozolomide (TMZ) is the front-line chemotherapeutic agent and has undergone intense studies on resistance. These studies reported on mismatch repair gene upregulation, ABC-targeted drug efflux, and cell cycle alterations. The mechanism by which TMZ induces cell cycle arrest has not been well-established. TMZ-resistant GBM cells have been linked to microRNA (miRNA) and exosomes. A cell cycle miRNA array identified distinct miRNAs only in exosomes from TMZ-resistant GBM cell lines and primary spheres. We narrowed the miRs to miR-93 and -193 and showed in computational analyses that they could target Cyclin D1. Since Cyclin D1 is a major regulator of cell cycle progression, we performed cause-effect studies and showed a blunting effects of miR-93 and -193 in Cyclin D1 expression. These two miRs also decreased cell cycling quiescence and induced resistance to TMZ. Taken together, our data provide a mechanism by which GBM cells can exhibit TMZ-induced resistance through miRNA targeting of Cyclin D1. The data provide a number of therapeutic approaches to reverse chemoresistance at the miRNA, exosomal and cell cycle points.
Collapse
Affiliation(s)
- Jessian L Munoz
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.,Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Nykia D Walker
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Satvik Mareedu
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.,Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sri Harika Pamarthi
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Garima Sinha
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.,Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Steven J Greco
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Pranela Rameshwar
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.,Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
13
|
Gougelet A. Exosomal microRNAs as a potential therapeutic strategy in hepatocellular carcinoma. World J Hepatol 2018; 10:785-789. [PMID: 30533178 PMCID: PMC6280159 DOI: 10.4254/wjh.v10.i11.785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/05/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second cause of cancer-related death worldwide. The incidence of HCC is constantly increasing in correlation with the rise in diabetes and obesity, arguing for an urgent need for new developments in the treatment of this lethal cancer. Exosomes are small double-membrane vesicles loaded with distinct cargos, particularly small non-coding RNAs called microRNAs, representative of each donor cell and secreted to affect the features of neighboring cells or recipient cells located further away, like in the case of metastasis. A better understanding of the role of exosomes with a microRNA signature in cancer pathogenesis gave rise to the concept of their use as a non-invasive diagnostic biomarker and in the treatment of cancer, including HCC. In this communication, we review recent works that demonstrate that hepatic stellate cells establish an epigenetic communication with liver cancer cells, which affects their pro-malignant features. If naturally secreted patient-derived exosomes show major limitations concerning their clinical use, bio-engineered exosome mimetics that incorporate controlled components and exhibit no protumoral properties could be promising carriers for the treatment of liver cancers, which is the organ preferentially targeted by systemic injection of exosomes.
Collapse
Affiliation(s)
- Angélique Gougelet
- Inserm, U1016, Institut Cochin, Paris 75014, France
- Cnrs, UMR8104, Paris 75014, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France.
| |
Collapse
|
14
|
Sang L, Wang XM, Xu DY, Zhao WJ. Bioinformatics analysis of aberrantly methylated-differentially expressed genes and pathways in hepatocellular carcinoma. World J Gastroenterol 2018; 24:2605-2616. [PMID: 29962817 PMCID: PMC6021769 DOI: 10.3748/wjg.v24.i24.2605] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To discover methylated-differentially expressed genes (MDEGs) in hepatocellular carcinoma (HCC) and to explore relevant hub genes and potential pathways.
METHODS The data of expression profiling GSE25097 and methylation profiling GSE57956 were gained from GEO Datasets. We analyzed the differentially methylated genes and differentially expressed genes online using GEO2R. Functional and enrichment analyses of MDEGs were conducted using the DAVID database. A protein-protein interaction (PPI) network was performed by STRING and then visualized in Cytoscape. Hub genes were ranked by cytoHubba, and a module analysis of the PPI network was conducted by MCODE in Cytoscape software.
RESULTS In total, we categorized 266 genes as hypermethylated, lowly expressed genes (Hyper-LGs) referring to endogenous and hormone stimulus, cell surface receptor linked signal transduction and behavior. In addition, 161 genes were labelled as hypomethylated, highly expressed genes (Hypo-HGs) referring to DNA replication and metabolic process, cell cycle and division. Pathway analysis illustrated that Hyper-LGs were enriched in cancer, Wnt, and chemokine signalling pathways, while Hypo-HGs were related to cell cycle and steroid hormone biosynthesis pathways. Based on PPI networks, PTGS2, PIK3CD, CXCL1, ESR1, and MMP2 were identified as hub genes for Hyper-LGs, and CDC45, DTL, AURKB, CDKN3, MCM2, and MCM10 were hub genes for Hypo-HGs by combining six ranked methods of cytoHubba.
CONCLUSION In the study, we disclose numerous novel genetic and epigenetic regulations and offer a vital molecular groundwork to understand the pathogenesis of HCC. Hub genes, including PTGS2, PIK3CD, CXCL1, ESR1, MMP2, CDC45, DTL, AURKB, CDKN3, MCM2, and MCM10, can be used as biomarkers based on aberrant methylation for the accurate diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xue-Mei Wang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dong-Yang Xu
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Jing Zhao
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
15
|
Liao X, Liu X, Yang C, Wang X, Yu T, Han C, Huang K, Zhu G, Su H, Qin W, Huang R, Yu L, Deng J, Zeng X, Ye X, Peng T. Distinct Diagnostic and Prognostic Values of Minichromosome Maintenance Gene Expression in Patients with Hepatocellular Carcinoma. J Cancer 2018; 9:2357-2373. [PMID: 30026832 PMCID: PMC6036720 DOI: 10.7150/jca.25221] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/14/2018] [Indexed: 12/31/2022] Open
Abstract
Background: The aim of the present study was to identify diagnostic and prognostic values of minichromosome maintenance (MCM) gene expression in patients with hepatocellular carcinoma (HCC). Methods: The biological function of the MCM genes were investigated by bioinformatics analysis. The diagnostic and prognostic values of the MCM genes were investigated by using the data of HCC patients from the GSE14520 and The Cancer Genome Atlas (TCGA) databases. Results: Bioinformatics analysis of the MCM genes substantiated that MCM2-7 genes were significantly enriched in DNA replication and cell cycle, and co-expressed with each other. These genes also co-expressed in HCC tumor tissue in both the GSE14520 and TCGA cohort. We also observed that the expression of the MCM2-7 genes was increased in tumor tissue, and diagnostic receiver operating characteristic analysis of MCM2-7 indicated that these genes could serve as sensitive diagnostic markers in HCC. Survival analysis in the GSE14520 cohort suggested that expression of MCM2, MCM4, MCM5, and MCM6 were significantly associated with hepatitis B virus-related HCC overall survival (OS). However, none of the MCM genes were associated with recurrence-free survival in the GSE14520 cohort. The validation cohort of TCGA suggested that the expression of MCM2, MCM6, and MCM7 were significantly correlated with HCC OS. Conclusion: Our study indicated that MCM2-7 genes may be potential diagnostic biomarkers in patients with HCC. Among them, MCM2 and MCM6 may serve as potential prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jianlong Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, 537000, Guangxi, China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| |
Collapse
|
16
|
Del Vecchio F, Lee GH, Hawezi J, Bhome R, Pugh S, Sayan E, Thomas G, Packham G, Primrose J, Pichler M, Mirnezami A, Calin G, Bullock M. Long non-coding RNAs within the tumour microenvironment and their role in tumour-stroma cross-talk. Cancer Lett 2018; 421:94-102. [PMID: 29458141 DOI: 10.1016/j.canlet.2018.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of RNA transcripts which have limited protein coding potential. They perform a variety of cellular functions in health, but have also been implicated during malignant transformation. A further theme in recent years is the critical role of the tumour microenvironment and the dynamic interactions between cancer and stromal cells in promoting invasion and disease progression. Whereas the contribution of deregulated lncRNAs within cancer cells has received considerable attention, their significance within the tumour microenvironment is less well understood. The tumour microenvironment consists of cancer-associated stromal cells and structural extracellular components which interact with one another and with the transformed epithelium via complex extracellular signalling pathways. LncRNAs are directly and indirectly involved in tumour/stroma cross-talk and help stimulate a permissive tumour microenvironment which is more conducive for invasive tumour growth. Furthermore, lncRNAs play key roles in determining the phenotype of cancer associated stromal cells and contribute to angiogenesis and immune evasion pathways, extracellular-matrix (ECM) turnover and the response to hypoxic stress. Here we explore the multifaceted roles of lncRNAs within the tumour microenvironment and their putative pathophysiological effects.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Gui Han Lee
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Joamir Hawezi
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Rahul Bhome
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Sian Pugh
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Emre Sayan
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Gareth Thomas
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Graham Packham
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - John Primrose
- Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander Mirnezami
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - George Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Marc Bullock
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK.
| |
Collapse
|
17
|
Cătană CS, Pichler M, Giannelli G, Mader RM, Berindan-Neagoe I. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma. Oncotarget 2018; 8:29519-29534. [PMID: 28392501 PMCID: PMC5438748 DOI: 10.18632/oncotarget.15706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022] Open
Abstract
In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs.
Collapse
Affiliation(s)
- Cristina- Sorina Cătană
- Department of Medical Biochemistry, ""Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Martin Pichler
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Gianluigi Giannelli
- Department of Internal Medicine, Immunology and Infectious Diseases, Section of Internal Medicine, University of Bari Medical School, Bari, Italy
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Austria
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, ""Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Experimental Pathology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania.,Medfuture Research Center for Advanced Medicine, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Wang H, Liang L, Dong Q, Huan L, He J, Li B, Yang C, Jin H, Wei L, Yu C, Zhao F, Li J, Yao M, Qin W, Qin L, He X. Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma. Theranostics 2018; 8:2814-2829. [PMID: 29774077 PMCID: PMC5957011 DOI: 10.7150/thno.23012] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/05/2018] [Indexed: 12/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been associated with hepatocellular carcinoma (HCC), but the underlying molecular mechanisms of their specific association with hepatocarcinogenesis have not been fully explored. Methods: miR503HG was identified by microarray and validated by real-time PCR. Survival analysis was evaluated using the Kaplan-Meier method and assessed using the log-rank test. In vitro and in vivo assays were preformed to explore the biological effects of miR503HG in HCC cells. The interaction of miR503HG with HNRNPA2B1 was identified by RNA pull-down and RNA immunoprecipitation. Expression of HNRNPA2B1 was examined by western blotting, immunofluorescence and immunohistochemical analyses, while HNRNPA2B1 ubiquitination was detected by immunoprecipitation. Results: We have identified 713 differentially expressed lncRNAs in 12 pairs of HCC tissues compared with corresponding noncancerous liver tissues. One of these lncRNAs, miR503HG, the host gene of miR503, is markedly decreased in HCC. Expression level of miR503HG is significantly associated with the time to recurrence and overall survival and is an independent risk factor for recurrence and survival. Enhanced expression of miR503HG could noticeably inhibit HCC invasion and metastasis in vitro and in vivo. Further investigation suggested that miR503HG could specifically interact with the heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1). miR503HG promoted HNRNPA2B1 degradation via the ubiquitin-proteasome pathway, which reduced the stability of p52 and p65 mRNA, and simultaneously suppressed the NF-κB signaling pathway in HCC cells. In addition, miR503HG can function synergistically with miR503 to inhibit HCC migration. Conclusion: Our findings support a role for miR503HG in tumor recurrence risk and survival prediction in HCC patients. We demonstrate a novel mechanism by which miR503HG inhibits the NF-κB signaling pathway and exerts its metastatic tumor suppression function through modulating the ubiquitination status of HNRNPA2B1.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Linhui Liang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiongzhu Dong
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Huan
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Botai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Lin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chengtao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Lunxiu Qin
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xianghuo He
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Liao X, Zhu G, Huang R, Yang C, Wang X, Huang K, Yu T, Han C, Su H, Peng T. Identification of potential prognostic microRNA biomarkers for predicting survival in patients with hepatocellular carcinoma. Cancer Manag Res 2018; 10:787-803. [PMID: 29713196 PMCID: PMC5912208 DOI: 10.2147/cmar.s161334] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The aim of the present study was to identify potential prognostic microRNA (miRNA) biomarkers for hepatocellular carcinoma (HCC) prognosis prediction based on a dataset from The Cancer Genome Atlas (TCGA). Materials and methods A miRNA sequencing dataset and corresponding clinical parameters of HCC were obtained from TCGA. Genome-wide univariate Cox regression analysis was used to screen prognostic differentially expressed miRNAs (DEMs), and multivariable Cox regression analysis was used for prognostic signature construction. Comprehensive survival analysis was performed to evaluate the prognostic value of the prognostic signature. Results Five miRNAs were regarded as prognostic DEMs and used for prognostic signature construction. The five-DEM prognostic signature performed well in prognosis prediction (adjusted P < 0.0001, adjusted hazard ratio = 2.249, 95% confidence interval =1.491-3.394), and time-dependent receiver-operating characteristic (ROC) analysis showed an area under the curve (AUC) of 0.765, 0.745, 0.725, and 0.687 for 1-, 2-, 3-, and 5-year HCC overall survival (OS) prediction, respectively. Comprehensive survival analysis of the prognostic signature suggests that the risk score model could serve as an independent factor of HCC and perform better in prognosis prediction than other traditional clinical indicators. Functional assessment of the target genes of hsa-mir-139 and hsa-mir-5003 indicates that they were significantly enriched in multiple biological processes and pathways, including cell proliferation and cell migration regulation, pathways in cancer, and the cyclic adenosine monophosphate (cAMP) signaling pathway. Conclusion Our study indicates that the novel miRNA expression signature may be a potential prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
20
|
Xiao Z, Shen J, Zhang L, Li M, Hu W, Cho C. Therapeutic targeting of noncoding RNAs in hepatocellular carcinoma: Recent progress and future prospects. Oncol Lett 2018; 15:3395-3402. [PMID: 29467864 PMCID: PMC5796293 DOI: 10.3892/ol.2018.7758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Due to the high mortality rate and unsatisfactory treatment options available, hepatocellular carcinoma (HCC) remains one of the most common malignancies and a leading cause of cancer-associated mortality. Novel therapeutic targets for HCC are urgently required. Advanced RNA sequencing technology enables the identification of considerable amounts of noncoding RNAs (ncRNAs), including small noncoding RNAs and long noncoding RNAs, which exhibit no protein-coding activities. In this respect, ncRNAs and their regulatory processes are important factors in liver tumorigenesis. The present review focuses on the characteristics and biological roles of ncRNAs in HCC. Potential therapeutic applications of ncRNAs in HCC are also evaluated.
Collapse
Affiliation(s)
- Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lin Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Hu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Chihin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| |
Collapse
|
21
|
Dou C, Sun L, Jin X, Han M, Zhang B, Jiang X, Lv J, Li T. Long non-coding RNA CARLo-5 promotes tumor progression in hepatocellular carcinoma via suppressing miR-200b expression. Oncotarget 2017; 8:70172-70182. [PMID: 29050269 PMCID: PMC5642544 DOI: 10.18632/oncotarget.19597] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in cancer initiation and progression. The aim was to investigate the biological functions and clinical significance of long non-coding RNA CARLo-5 in hepatocellular carcinoma (HCC). QRT-PCR was performed to investigate CARLo-5 expression in HCC tissues and cells. Kaplan-Meier curve and multivariate analysis validated the association between CARLo-5 expression and overall survival (OS) in HCC patients. Cell proliferation and invasion was performed by CCK8 cell proliferation, cell colony formation and transwell invasion assays. Western-blot assay was performed to evaluate the protein expression of Twist1, ZEB1, E-cadherin and Vimentin. Tumor xenografts were performed to evaluate the effect of CARLo-5 on tumor growth in vivo. RNA Immunoprecipitation (RIP) and Chromatin Immunoprecipitation (ChIP) were also performed. Our results showed that CARLo-5 expression was significantly higher in HCC tissues and upregulated CARLo-5 expression was closely correlated with tumor size and advanced tumor stage. Kaplan-Meier curve and multivariate analysis validated that higher CARLo-5 expression predicted a poor prognosis for HCC patients and was an independent risk factor for OS in HCC patients. In vitro, knockdown of CARLo-5 inhibited cell proliferation, colony formation, cell invasion and inhibited the cell epithelial-mesenchymal transition (EMT) by up-regulating the E-cadherin expression and down-regulating Twist1, ZEB1 and vimentin expression in HCC cells. Furthermore, we demonstrated that CARLo-5 inhibited the miR-200b expression via EZH2. In vivo, knockdown of CARLo-5 significantly inhibited the tumor growth. Thus, our results indicated that CARLo-5 represented a novel tumor biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Chunqing Dou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Liyuan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Xin Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Mingming Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Bao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Xian Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Jinyong Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Tao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Zheng Y, Long J, Wu L, Zhang H, Li L, Zheng Y, Wang A, Lin J, Yang X, Sang X, Hu K, Pan J, Zhao H. Identification of hub genes involved in the development of hepatocellular carcinoma by transcriptome sequencing. Oncotarget 2017; 8:60358-60367. [PMID: 28947976 PMCID: PMC5601144 DOI: 10.18632/oncotarget.19483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/19/2017] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. The aim of this study was to identify underlying hub genes and dysregulated pathways associated with the development of HCC using bioinformatics analysis. Differentially expressed protein-coding genes were subjected to transcriptome sequencing in 11 pairs of liver cancer tissue and matched adjacent non-cancerous tissue. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, followed by protein-protein interaction (PPI) network construction. Hub genes were identified via centralities analysis and verified using published datasets. In total, 720 significantly differentially expressed protein-coding genes were identified in the samples, including 335 upregulated genes and 385 downregulated genes. The upregulated genes were significantly enriched in cell adhesion, biological adhesion and cell-cell adhesion GO terms under biological process (BP). Conversely, the downregulated genes were significantly enriched in embryonic organ morphogenesis, embryonic organ development and embryonic morphogenesis. The KEGG pathway analysis showed that the upregulated genes were enriched in ECM-receptor interaction and focal adhesion pathways. Furthermore, the downregulated genes were enriched in the ErbB, VEGF and MAPK signaling pathways. The PPI network and centralities analysis suggested that ITGA2 and 12 alternate genes were significant hub genes. These findings improve current understanding of the molecular mechanisms underlying HCC development and may be helpful in identifying candidate molecular biomarkers for use in diagnosing, treating and monitoring the prognosis of HCC.
Collapse
Affiliation(s)
- Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haohai Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lin Li
- School of Life Sciences, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioinformatics, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau, China
| | - Anqiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Hu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Pan
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Xu Y, Zheng Y, Liu H, Li T. Modulation of IGF2BP1 by long non-coding RNA HCG11 suppresses apoptosis of hepatocellular carcinoma cells via MAPK signaling transduction. Int J Oncol 2017; 51:791-800. [PMID: 28677801 PMCID: PMC5564403 DOI: 10.3892/ijo.2017.4066] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy of the liver. HCG11 is a member of long non-coding family, upregulation of which in HCC was proved by our previous study. In the present study, the role of HCG11 in the development of HCC was detected by focusing on the interaction between HCG11 and its target protein insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). The expression status of HCG11 and IGF2BP1 was first investigated with clinical HCC samples. Then the expressions of HCG11 and IGF2BP1 were both inhibited in the human HCC cell line HepG2 and the cell viability, proliferation, apoptosis and metastasis potential of HepG2 cells were assessed. At molecular level, the expression levels of p-ERK, p-JNK, p-p38, p21 and cleaved caspase-3 were also determined to explain the pathways involved in the function of HCG11 in the progression of HCC. Expression of HCG11 and IGF2BP1 were significantly higher in HCC tissues than those in para-tumor tissues. Knockdown of both indicators led to decreased cell viability, proliferation, and migration ability in HepG2 cells while the cell apoptosis and G1 cell cycle arrest were induced after knockdown of HCG11 and IGF2BP1. In addition, suppressed activity of HCG11 and IGF2BP1 blocked the phosphorylation of anti-apoptosis factors, including ERK, JNK and p38 while the mitochondrial apoptosis in HCC cells was initiated by activation of p21 and cleaved caspase-3. HCG11 exerted its effect on HCC via interaction with IGF2BP1, leading to activation of MAPK signaling, which eventually promoted the progression of HCC.
Collapse
Affiliation(s)
- Yantian Xu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuanwen Zheng
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongyan Liu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Tao Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
24
|
Hu J, Song C, Duan B, Zhang X, Li D, Zhu L, Gao H. LncRNA-SVUGP2 suppresses progression of hepatocellular carcinoma. Oncotarget 2017; 8:97835-97850. [PMID: 29228655 PMCID: PMC5716695 DOI: 10.18632/oncotarget.18279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/25/2017] [Indexed: 01/21/2023] Open
Abstract
Numerous studies indicate that long noncoding RNAs (lncRNAs) are dysregulated in hepatocellular carcinoma (HCC) and might serve as potential diagnostic biomarkers and therapeutic targets of HCC. Therefore, it is interesting to globally identify the lncRNAs altered in HCC. In our study, we used microarray to profile the levels of lncRNAs and mRNAs in three pairs of HCC and their adjacent noncancerous samples. We found lncRNA-SVUGP2, which is a splice variant of the UGP2 gene, was down-regulated in HCC samples and correlates with a better prognosis in patients with HCC. Overexpression of lncRNA-SVUGP2 in HepG2 and Hep3B liver cancer cells suppresses cell proliferation in vitro and tumor growth in vivo. Moreover, lncRNA-SVUGP2 suppresses the invasion ability of liver cancer cell lines and downregulates the mRNA and protein levels of MMP2 and 9. Additionally, lncRNA-SVUGP2 positively or negatively correlates with many mRNAs in liver cancer tissues, indicating it is multifunctional in regulating carcinogenesis.
Collapse
Affiliation(s)
- Jiangfeng Hu
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenlin Song
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bensong Duan
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Engineering Center for Molecular Medicine, National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Dongliang Li
- Department of Hepatobiliary Medicine, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, China
| | - Liang Zhu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hengjun Gao
- National Engineering Center for Biochip at Shanghai, Shanghai, China.,Department of Gastroenterology, Institute of Digestive Diseases, Tongji University School of Medicine, Wuhan, China
| |
Collapse
|
25
|
Birgani MT, Hajjari M, Shahrisa A, Khoshnevisan A, Shoja Z, Motahari P, Farhangi B. Long Non-Coding RNA SNHG6 as a Potential Biomarker for Hepatocellular Carcinoma. Pathol Oncol Res 2017; 24:329-337. [PMID: 28508329 DOI: 10.1007/s12253-017-0241-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 04/26/2017] [Indexed: 02/06/2023]
Abstract
Long Non-coding RNAs (lncRNAs) refer to all non-protein coding transcripts longer than 200 nucleotides. Their critical roles in different biological pathways have been already well established. Altered expression of lncRNAs can be involved in the cancer initiation and/or progression. Since patients with hepatocellular carcinoma (HCC) are usually diagnosed in late stages, developing diagnostic methods seems to be essential. In this study, the expression levels of different lncRNAs were systematically analysed in different genomic and transcriptome datasets. The analyses showed that SNHG6 is among the lncRNAs with distinctive dysregulation of expression and copy number variation in HCC tumors compared with normal tissues. The results also suggest that the dysregulation of SNHG6 is highly cancer type specific. Through co-occurrence analyses, we found that SNHG6 and its related co-expressed genes on 8q are involved in the structural integrity of ribosome and translation. This comprehensive in silico analysis, provides a resource for investigating SNHG6 in hepatocellular carcinoma and lays the groundwork for design of next researches.
Collapse
Affiliation(s)
- Maryam Tahmasebi Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammadreza Hajjari
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Arman Shahrisa
- Department of Molecular Genetics, Faculty of Biosciences, Tarbiat Modares University, Tehran, Iran
| | - Atefeh Khoshnevisan
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Shoja
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Paria Motahari
- Department of Biotechnology, Iranian Research Organization Science & Technology, Tehran, Iran
| | - Baharak Farhangi
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Effects of LncRNA-HOST2 on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma cell line SMMC-7721. Biosci Rep 2017; 37:BSR20160532. [PMID: 28143959 PMCID: PMC5398253 DOI: 10.1042/bsr20160532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
The present study explored the effect of long non-coding RNA-human ovarian cancer-specific transcript 2 (LncRNA-HOST2) on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721. HCC tissues and adjacent normal tissues from 162 HCC patients were collected. The HCC cell lines were assigned into the control group (regular culture), negative control (NC) group (transfected with siRNA) and experimental group (transfected with Lnc-HOST2 siRNA). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of LncRNA-HOST2. Cell proliferation was detected by CCK-8 and colony-forming assays, cell apoptosis by flow cytometry and cell migration by Scratch test. Transwell assay was used to evaluate cell migration and invasion abilities. LncRNA-HOST2 expression in the HCC tissues increased 2-10 times than that in the adjacent normal tissues. Compared with the HL-7702 cell line, LncRNA-HOST2 expression in HepG2, SMMC-7721 and Huh7 cell lines was all up-regulated, but the SMMC-7721 cell had the highest Lnc-HOST2 expression. The LncRNA-HOST2 expression in the experimental group was down-regulated as compared with the control and NC groups. In comparison with the control and NC groups, cloned cells reduced, cell apoptosis increased, clone-forming ability weakened and inhibitory rate of colony formation increased in the experimental group. The cells migrating and penetrating into the transwell chamber were fewer in the experimental group than those in the control and NC groups. The experimental group exhibited slow wound healing and decreased cell migration area after 48 h. These findings indicate that LncRNA-HOST2 can promote cell proliferation, migration and invasion and inhibit cell apoptosis in human HCC cell line SMMC-7721.
Collapse
|
27
|
El-Tawdi AHF, Matboli M, El-Nakeep S, Azazy AEM, Abdel-Rahman O. Association of long noncoding RNA and c-JUN expression in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2016; 10:869-77. [PMID: 27215316 DOI: 10.1080/17474124.2016.1193003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long noncoding RNAs(lncRNAs) have emerged as key elements in modulating gene expression in different biological contexts. PATIENTS AND METHODS We used quantitative real-time PCR (Qpcr) to evaluate the expression of lncRNA-UCA1 and C-JUN in serum of 70 patients with hepatocellular carcinoma (HCC), 32 patients chronic hepatitis C (CHC) and 38 healthy subjects and their correlation with different clinicopathological factors. RESULTS The expression of lncRNA-UCA1 and C-JUN was positive in 91.4%HCC patients with strong discriminating power between HCC and healthy subjects and CHC patients as well. The median follow up period was 29 months. The survival analysis showed that both lncRNA-UCA1 and C-JUN were independent prognostic factors. Of note, we identified C-JUN expression changes consistent with the lncRNA-UCA1 target regulation. CONCLUSION This information sheds light on the possible role of lncRNA-UCA1 and C-JUN mRNA as promising diagnostic and prognostic markers as well as potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Ahmed H F El-Tawdi
- a General and Plastic Surgery Department , Military Medical Academy , Cairo , Egypt
| | - Marwa Matboli
- b Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Sarah El-Nakeep
- c Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | | | - Omar Abdel-Rahman
- e Clinical Oncology Department, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| |
Collapse
|
28
|
Liu J, Sun X, Zhu H, Qin Q, Yang X, Sun X. Long noncoding RNA POU6F2-AS2 is associated with oesophageal squamous cell carcinoma. J Biochem 2016; 160:195-204. [PMID: 27033944 DOI: 10.1093/jb/mvw025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/24/2016] [Indexed: 12/28/2022] Open
Abstract
Oesophageal carcinoma is one of the most lethal cancer types in the world, especially in some part of China. Oesophageal squamous cell carcinoma (OSCC) is a major subtype, which has been shown to be associated with unhealthy diet habit, smoking, environmental carcinogens etc. The OSCC often progress slowly, however, it is often diagnosed at an advanced stage. Thus it is imperative to elucidate the molecular mechanisms involved in the initiation and progression of OSCC. Long noncoding RNAs (lncRNA) has emerged as a novel functional player transcribed from the genome. Here, we describe a novel lncRNA POU6F2-AS2 specifically expressed in OSCC. POU6F2-AS2 is involved in the DNA damage response and regulates cells survival after ionizing radiation. POU6F2-AS2 interacts with Ybx1 protein and regulates its chromatin localization. Our current study represents the first description of an OSCC associated lncRNA that modulates DNA repair.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China and
| | - Xiangdong Sun
- Department of Radiotherapy, The 81st Hospital of PLA, Yanggongjing 34, Nanjing 210002, China
| | - Hongcheng Zhu
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China and
| | - Qin Qin
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China and
| | - Xi Yang
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China and
| | - Xinchen Sun
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China and
| |
Collapse
|
29
|
Liu YR, Tang RX, Huang WT, Ren FH, He RQ, Yang LH, Luo DZ, Dang YW, Chen G. Long noncoding RNAs in hepatocellular carcinoma: Novel insights into their mechanism. World J Hepatol 2015; 7:2781-2791. [PMID: 26668690 PMCID: PMC4670950 DOI: 10.4254/wjh.v7.i28.2781] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/22/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant subject of liver malignancies which arouse global concern. Advanced studies have found that long noncoding RNAs (lncRNAs) are differentially expressed in HCC and implicate they may play distinct roles in the pathogenesis and metastasis of HCC. However, the underlying mechanisms remain largely unclear. In this review, we summarized the functions and mechanisms of those known aberrantly expressed lncRNAs identified in human HCC tissues. We hope to enlighten more comprehensive researches on the detailed mechanisms of lncRNAs and their application in clinic, such as being used as diagnostic and prognostic biomarkers and the targets for potential therapy. Although studies on lncRNAs in HCC are still deficient, an improved understanding of the roles played by lncRNAs in HCC will lead to a much more effective utilization of those lncRNAs as novel candidates in early detection, diagnosis, prevention and treatment of HCC.
Collapse
|
30
|
Song X, Wang Z, Jin Y, Wang Y, Duan W. Loss of miR-532-5p in vitro promotes cell proliferation and metastasis by influencing CXCL2 expression in HCC. Am J Transl Res 2015; 7:2254-2261. [PMID: 26807173 PMCID: PMC4697705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/31/2015] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) have been widely reported, which play important roles in cancer development. CXCL2 acts as an oncogene, however, its regulation by miRNAs is not clear in hepatocellular carcinoma (HCC). In our research, it is aimed to study the role of CXCL2 in HCC and the regulation of its expression by miRNAs. Firstly, we found that CXCL2 was up-regulated in the blood of patients with HCC and cell lines compared with the normal controls. CXCL2 could enhance HCC cell proliferation and metastasis. miR-532-5p was predicted as a regulatory miRNA of CXCL2 in HCC, and negatively associated with CXCL2 in HCC samples. It was also verified that miR-532-5p inhibited cell proliferation and metastasis of HCC cells by inhibition CXCL2. Collectively, our findings suggested that miR-532-5p may function as a tumor suppressor in HCC by targeting CXCL2.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affliated to Shandong Uiniversty Jinan, China
| | - Zie Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affliated to Shandong Uiniversty Jinan, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affliated to Shandong Uiniversty Jinan, China
| | - Yong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affliated to Shandong Uiniversty Jinan, China
| | - Wenbing Duan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affliated to Shandong Uiniversty Jinan, China
| |
Collapse
|
31
|
Venkatesh T, Suresh PS, Tsutsumi R. Non-coding RNAs: Functions and applications in endocrine-related cancer. Mol Cell Endocrinol 2015; 416:88-96. [PMID: 26360585 DOI: 10.1016/j.mce.2015.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 01/25/2023]
Abstract
A significant fraction of the human genome is transcribed as non-coding RNAs (ncRNAs). This non-coding transcriptome has challenged the notion of the central dogma and its involvement in transcriptional and post-transcriptional regulation of gene expression is well established. Interestingly, several ncRNAs are dysregulated in cancer and current non-coding transcriptome research aims to use our increasing knowledge of these ncRNAs for the development of cancer biomarkers and anti-cancer drugs. In endocrine-related cancers, for which survival rates can be relatively low, there is a need for such advancements. In this review, we aimed to summarize the roles and clinical implications of recently discovered ncRNAs, including long ncRNAs, PIWI-interacting RNAs, tRNA- and Y RNA-derived ncRNAs, and small nucleolar RNAs, in endocrine-related cancers affecting both sexes. We focus on recent studies highlighting discoveries in ncRNA biology and expression in cancer, and conclude with a discussion on the challenges and future directions, including clinical application. ncRNAs show great promise as diagnostic tools and therapeutic targets, but further work is necessary to realize the potential of these unconventional transcripts.
Collapse
MESH Headings
- Biomarkers, Tumor/classification
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Endocrine Gland Neoplasms/genetics
- Endocrine Gland Neoplasms/metabolism
- Endocrine Gland Neoplasms/therapy
- Female
- Gene Expression Regulation
- Humans
- Male
- RNA, Long Noncoding/classification
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/classification
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Thejaswini Venkatesh
- Nitte University Centre for Science Education and Research (NUCSER), Nitte University, Deralakatte, Mangalore 575 018, Karnataka, India
| | - Padmanaban S Suresh
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore 574 199, Karnataka, India.
| | - Rie Tsutsumi
- Division of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
32
|
Kanda M, Sugimoto H, Kodera Y. Genetic and epigenetic aspects of initiation and progression of hepatocellular carcinoma. World J Gastroenterol 2015; 21:10584-10597. [PMID: 26457018 PMCID: PMC4588080 DOI: 10.3748/wjg.v21.i37.10584] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/08/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary cancer of the liver that is predominant in developing countries and is responsible for nearly 600000 deaths each year worldwide. Similar to many other tumors, the development of HCC must be understood as a multistep process involving the accumulation of genetic and epigenetic alterations in regulatory genes, leading to the activation of oncogenes and the inactivation or loss of tumor suppressor genes. Extensive research over the past decade has identified a number of molecular biomarkers, including aberrant expression of HCC-related genes and microRNAs. The challenge facing HCC research and clinical care at this time is to address the heterogeneity and complexity of these genetic and epigenetic alterations and to use this information to direct rational diagnosis and treatment strategies. The multikinase inhibitor sorafenib was the first molecularly targeted drug for HCC to show some extent of survival benefits in patients with advanced tumors. Although the results obtained using sorafenib support the importance of molecular therapies in the treatment of HCC, there is still room for improvement. In addition, no molecular markers for drug sensitivity, recurrence and prognosis are currently clinically available. In this review, we provide an overview of recently published articles addressing HCC-related genes and microRNAs to update what is currently known regarding genetic and epigenetic aspects of the pathogenesis of HCC and propose novel promising candidates for use as diagnostic and therapeutic targets in HCC.
Collapse
|
33
|
Quinn JF, Patel T, Wong D, Das S, Freedman JE, Laurent LC, Carter BS, Hochberg F, Van Keuren-Jensen K, Huentelman M, Spetzler R, Kalani MYS, Arango J, Adelson PD, Weiner HL, Gandhi R, Goilav B, Putterman C, Saugstad JA. Extracellular RNAs: development as biomarkers of human disease. J Extracell Vesicles 2015; 4:27495. [PMID: 26320940 PMCID: PMC4553262 DOI: 10.3402/jev.v4.27495] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/08/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.
Collapse
Affiliation(s)
- Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA;
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - David Wong
- School of Dentistry, Department of Head and Neck Surgery, University of California at Los Angeles, Los Angeles, CA, USA
| | - Saumya Das
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jane E Freedman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Louise C Laurent
- Department of Reproductive Medicine, University of California at San Diego, San Diego, CA, USA
| | - Bob S Carter
- Department of Neurosurgery, University of California at San Diego, San Diego, CA, USA
| | - Fred Hochberg
- Department of Neurosurgery, University of California at San Diego, San Diego, CA, USA
| | | | | | - Robert Spetzler
- Barrow Neurological Institute, Department of Neurological Surgery, St. Joseph's Hospital & Medical Center, Phoenix, AZ, USA
| | - M Yashar S Kalani
- Barrow Neurological Institute, Department of Neurological Surgery, St. Joseph's Hospital & Medical Center, Phoenix, AZ, USA
| | - Jorge Arango
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Beatrice Goilav
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaim Putterman
- Division of Rheumatology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie A Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA;
| |
Collapse
|
34
|
Yuan SX, Zhang J, Xu QG, Yang Y, Zhou WP. Long noncoding RNA, the methylation of genomic elements and their emerging crosstalk in hepatocellular carcinoma. Cancer Lett 2015; 379:239-44. [PMID: 26282784 DOI: 10.1016/j.canlet.2015.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
The epigenetic mechanism that incorporates DNA methylation alterations, histone modifications, and non-coding RNA expression has been identified as a major characteristic in distinguishing physiological and pathological settings of cancers including hepatocellular carcinoma (HCC), the third leading cause of mortality related cancer. The advance in methylation modification of chromatin elements (for both genomic DNA and histone tails) and the emerging roles of long noncoding RNA (lncRNA) have given us a better understanding of molecular mechanisms underlying HCC. Recently, methods like genome-wide lncRNA profiling and histone hallmark detection were reported to discover mass tumor-associated lncRNAs epigenetically deregulated by differential chromosome modification, mainly by genomic DNA and histone methylation. Therefore, aberrant methylation modification of certain particular lncRNA genes could be crucial events correlating with unfavorable outcomes in HCC. In addition, amount of lncRNAs could act as a manipulator for DNA methylation or a scaffold for histone modification to affect key signaling pathways in hepatocarcinogenesis. This suggests that methylation modification of chromatin elements may have functional crosstalk with lncRNA. Here, we aim to outline the emerging role of the methylation and lncRNA, and their crosstalk of molecular mechanism.
Collapse
Affiliation(s)
- Sheng-Xian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Jin Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Qing-Guo Xu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|