1
|
Zheng Z, Ma M, Han X, Li X, Huang J, Zhao Y, Liu H, Kang J, Kong X, Sun G, Sun G, Kong J, Tang W, Shao G, Xiong F, Song J. Idarubicin-loaded biodegradable microspheres enhance sensitivity to anti-PD1 immunotherapy in transcatheter arterial chemoembolization of hepatocellular carcinoma. Acta Biomater 2023; 157:337-351. [PMID: 36509402 DOI: 10.1016/j.actbio.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Transarterial chemoembolization (TACE) is an image-guided locoregional therapy used for the treatment of patients with primary hepatocellular carcinoma (HCC). However, conventional TACE formulations such as epirubicin-lipiodol emulsion are rapidly dissociated due to the instability of the emulsion, resulting in insufficient local drug concentrations in the target tumor. To overcome these limitations, we used biodegradable Idarubicin loaded microspheres (BILMs), which were prepared from gelatin and carrageenan and could be loaded with Idarubicin (IDA-MS). The morphology and the ability to load and release IDA of BILMs were characterized in vitro. We evaluated tumor changes and side effects after TACE treatment with IDA-MS in VX2 rabbit and C57BL/6 mice HCC models. In addition, the effect of IDA-MS on the tumor immune microenvironment of HCC tumors was elucidated via mass spectrometry and immunohistochemistry. Result showed that IDA-MS was developed as a new TACE formulation to overcome the poor delivery of drugs due to rapid elimination of the anticancer drug into the systemic circulation. We demonstrated in rabbits and mice HCC models that TACE with IDA-MS resulted in significant tumor shrinkage and no more severe adverse events than those observed in the IDA group. TACE with IDA-MS could also significantly enhance the sensitivity of anti-PD1 immunotherapy, improve the expression of CD8+ T cells, and activate the tumor immune microenvironment in HCC. This study provides a new approach for TACE therapy and immunotherapy and illuminates the future of HCC treatment. STATEMENT OF SIGNIFICANCE: Conventional transarterial chemoembolization (TACE) formulations are rapidly dissociated due to the instability of the emulsion, resulting in insufficient local drug concentrations in hepatocellular carcinoma (HCC). To overcome these limitations, we used biodegradable microspheres called BILMs, which could be loaded with Idarubicin (IDA-MS). We demonstrated in rabbits and mice HCC models that TACE with IDA-MS resulted in significant tumor shrinkage and no more severe adverse events than those observed in the IDA group. TACE with IDA-MS could also significantly enhance the sensitivity of anti-PD1 immunotherapy, improve the expression of CD8+ T cells, and activate the tumor immune microenvironment in HCC. This study provides a new approach for TACE therapy and immunotherapy and illuminates the future of HCC treatment.
Collapse
Affiliation(s)
- Zhiying Zheng
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingxi Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano-Science and Technology, Southeast University, Nanjing, China
| | - Xiuping Han
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jinxin Huang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano-Science and Technology, Southeast University, Nanjing, China
| | - Yuetong Zhao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junwei Kang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Kong
- Department of Intervention, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Weiwei Tang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano-Science and Technology, Southeast University, Nanjing, China.
| | - Jinhua Song
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Younossi I, Stepanova M, Walters M, Golabi P, Srishord M, Younossi ZM. Health-Related Quality of Life and Health Care Resource Utilization in Patients With Chronic Liver Disease and Primary Liver Cancer in the United States: Analysis of Medical Expenditure Panel Survey. J Clin Exp Hepatol 2022; 12:272-277. [PMID: 35535094 PMCID: PMC9077230 DOI: 10.1016/j.jceh.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Worldwide, liver cancer (LC) is the fifth and third most common type of cancer and cancer-related mortality, respectively. Our aim was to assess health-related quality of life (HRQL) and resource utilization in chronic liver disease (CLD) patients with LC. Methods We used the Medical Expenditure Panel Survey 2004-2013. All patients had HRQL (Short Form-12, Patient Health Questionnaire-2, Kessler Psychological Distress Scale) and resource utilization data. We used patients with CLD without LC and colon cancer (CC) as controls. Results A total of 1882 CLD patients (53 ± 14 years, 45% male, 53% white, 15% black, 23% Hispanic, 6% Asian, 42% employed, 48% private insurance, and 11% uninsured) were included. Of the cohort, 102 (5.4%) patients had LC. LC patients were older, more likely to be male and white, less employed but less likely uninsured than CLD patients without LC (all P < 0.05). In comparison to both non-LC CLD and CC controls, LC had worse health: 40% vs. 27% vs. 25% reported fair health and 29% vs. 20% vs. 16% poor health status (P < 0.05). Furthermore, LC patients more frequently reported physical limitations: 51% vs. 35% vs. 35%, respectively (P = 0.01). Physical HRQL scores were lower in LC patients compared with both CLD and CC controls. Although mental health scores in LC were similar to non-LC CLD controls, they were lower than in CC. In addition, most aspects of healthcare resource utilization were higher for LC patients compared with both non-LC CLD and CC controls. Conclusion While having CLD causes impairment of patients' HRQL, LC further adds to this impairment and also contributes to a substantial resource utilization.
Collapse
Key Words
- CC, Colon cancer
- CLD, Chronic liver disease
- HCC, hepatocellular carcinoma
- HRQL, Health-related quality-of-life
- LC, Liver cancer
- LD, Liver disease
- LT, Liver transplantation
- MEPS, Medical Expenditure Panel Survey
- QoL, quality of life
- SEER, Surveillance, Epidemiology, and End Results Program
- disease burden
- metabolic syndrome
- national survey
- outcomes
- patient-reported outcomes
Collapse
Affiliation(s)
- Issah Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States,Center for Outcomes Research in Liver Diseases, Washington DC, United States
| | - Maria Stepanova
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States,Center for Outcomes Research in Liver Diseases, Washington DC, United States
| | - Mercedes Walters
- Center for Outcomes Research in Liver Diseases, Washington DC, United States
| | - Pegah Golabi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States,Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, United States,Inova Medicine, Inova Health System, Falls Church, VA, United States
| | - Manirath Srishord
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States,Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, United States
| | - Zobair M. Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States,Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, United States,Inova Medicine, Inova Health System, Falls Church, VA, United States,Address for correspondence. Zobair M. Younossi, Betty and Guy Beatty Center for Integrated Research, Claude Moore Health Education and Research Building, 3300 Gallows Road, Falls Church, VA 22042, United States.
| |
Collapse
|
3
|
Kim D, Lee JH, Moon H, Seo M, Han H, Yoo H, Seo H, Lee J, Hong S, Kim P, Lee HJ, Chung JW, Kim H. Development and evaluation of an ultrasound-triggered microbubble combined transarterial chemoembolization (TACE) formulation on rabbit VX2 liver cancer model. Am J Cancer Res 2021; 11:79-92. [PMID: 33391462 PMCID: PMC7681087 DOI: 10.7150/thno.45348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Transarterial chemoembolization (TACE) is an image-guided locoregional therapy used for the treatment of patients with primary or secondary liver cancer. However, conventional TACE formulations are rapidly dissociated due to the instability of the emulsion, resulting in insufficient local drug concentrations in the target tumor. Methods: To overcome these limitations, a doxorubicin-loaded albumin nanoparticle-conjugated microbubble complex in an iodized oil emulsion (DOX-NPs-MB complex in Lipiodol) has been developed as a new ultrasound-triggered TACE formulation. Results: (1) Microbubbles enhanced therapeutic efficacy by effectively delivering doxorubicin- loaded nanoparticles into liver tumors via sonoporation under ultrasound irradiation (US+). (2) Microbubbles constituting the complex retained their function as an ultrasound contrast agent in Lipiodol. In a rabbit VX2 liver cancer model, the in vivo study of DOX-NPs-MB complex in Lipiodol (US+) decreased the viability of tumor more than the conventional TACE formulation, and in particular, effectively killed cancer cells in the tumor periphery. Conclusion: Incorporation of doxorubicin-loaded microbubble in the TACE formulation facilitated drug delivery to the tumor with real-time monitoring and enhanced the therapeutic efficacy of TACE. Thus, the enhanced TACE formulation may represent a new treatment strategy against liver cancer.
Collapse
|
4
|
Advanced Robotic Angiography Systems for Image Guidance During Conventional Transarterial Chemoembolization. Invest Radiol 2019; 54:153-159. [DOI: 10.1097/rli.0000000000000519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Park WKC, Maxwell AWP, Frank VE, Primmer MP, Collins SA, Baird GL, Dupuy DE. Evaluation of a Novel Thermal Accelerant for Augmentation of Microwave Energy during Image-guided Tumor Ablation. Am J Cancer Res 2017; 7:1026-1035. [PMID: 28382173 PMCID: PMC5381263 DOI: 10.7150/thno.18191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023] Open
Abstract
The primary challenge in thermal ablation of liver tumors (e.g. hepatocellular carcinoma and hepatic colorectal cancer) is the relatively high recurrence rate (~30%) for which incomplete ablation at the periphery of the tumor is the most common reason. In an attempt to overcome this, we have developed a novel thermal accelerant (TA) agent capable of augmenting microwave energy from a distance normally unattainable by a single microwave ablation antenna. This cesium-based block co-polymer compound transforms from a liquid to a gel at body temperature and is intrinsically visible by computed tomography. Using an agarose phantom model, herein we demonstrate that both the rate and magnitude of temperature increase during microwave ablation were significantly greater in the presence of TA when compared with controls. These results suggest robust augmentation of microwave energy, and may translate into larger ablation zone volumes within biologic tissues. Further work using in vivo techniques is necessary to confirm these findings.
Collapse
|
6
|
Ultrasound-guided intratumoral delivery of doxorubicin from in situ forming implants in a hepatocellular carcinoma model. Ther Deliv 2016; 7:201-12. [PMID: 27010983 DOI: 10.4155/tde-2015-0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinomas are frequently nonresponsive to systemically delivered drugs. Local delivery provides an alternative to systemic administration, maximizing the dose delivered to the tumor, achieving sustained elevated concentrations of the drug, while minimizing systemic exposure. RESULTS Ultrasound-guided deposition of doxorubicin (Dox)-eluting in situ forming implants (ISFI) in an orthotopic tumor model significantly lowers systemic drug levels. As much as 60 µg Dox/g tumors were observed 21 days after ISFI injection. Tumors treated with Dox implants also showed a considerable reduction in progression at 21 days. CONCLUSION Dox-eluting ISFIs provide a promising platform for the treatment of hepatocellular carcinomas by which drug can be delivered directly into the lesion, bypassing distribution and elimination by the circulatory system.
Collapse
|
7
|
Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy. Acta Biomater 2016; 41:253-63. [PMID: 27184404 DOI: 10.1016/j.actbio.2016.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Transcatheter arterial chemoembolization (TACE) is the most common palliative therapy for unresectable hepatocellular carcinoma (HCC). The conventional TACE technique, which employs the Lipiodol® emulsion, has been widely used for human cancer treatments. However, this delivery system seems to be inconsistent and unstable in maintaining a high concentration of drugs at tumor sites. An alternative approach for TACE is loading drugs into a liquid embolic solution that exists as an injectable solution and can exhibit a sol-to-gel phase transition to form a solidified state once delivered to the tumor site. Here, we develop a novel sulfamethazine-based anionic pH-sensitive block copolymer with potential application as a radiopaque embolic material. The copolymer, named PCL-PEG-SM, and comprised of poly(ε-caprolactone), sulfamethazine, and poly(ethylene glycol), was fabricated by free radical polymerization. An aqueous solution of the developed copolymer underwent a sol-to-gel phase transition upon lowering the environmental pH to create a gel region that covered the physiological condition (pH 7.4, 37°C) and the low pH conditions at tumor sites (pH 6.5-7.0, 37°C). The release of doxorubicin (DOX) from DOX-loaded copolymer hydrogels could be sustained for more than 4weeks in vitro, and the released DOX retained its fully bioactivity via inhibition the proliferation of hepatic cancer cells. The radiopaque embolic formulations that were prepared by mixing copolymer solutions at pH 8.0 with Lipiodol®, a long-lasting X-ray contrast agent, could exhibit the gelation inside the tumor after intratumoral injection or intraarterial administration using a VX2 carcinoma hepatic tumor rabbit model. These results suggest that a novel anionic pH-sensitive copolymer has been developed with a potential application as a liquid radiopaque embolic solution for TACE of HCC. STATE OF SIGNIFICANCE Transcatheter arterial chemoembolization (TACE) has been widely used as a palliative treatment therapy for unresectable hepatocellular carcinoma (HCC). Conventional TACE technique, which usually employs emulsion of DOX-in-Lipiodol®, followed by an embolic agent, has significant limitation of inconsistency and lack of controlled release ability. To address these limitations of conventional TACE material system, we introduced a novel liquid radiopaque embolic material from our pH-sensitive hydrogel. The material has low viscosity that can be injected via a microcatheter, rather biocompatibility, and drug controlled release ability. Importantly, it can form gel in the tumor as well as tumoral vasculature in response to the lowered pH at the tumor site, which proved the potential for the use to treat HCC by TACE therapy.
Collapse
|
8
|
Nguyen QV, Lym JS, Huynh CT, Kim BS, Jae HJ, Kim YI, Lee DS. A novel sulfamethazine-based pH-sensitive copolymer for injectable radiopaque embolic hydrogels with potential application in hepatocellular carcinoma therapy. Polym Chem 2016. [DOI: 10.1039/c6py01141a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After transcatheter delivery through hepatic artery, a hydrogel can be formed within tumor vasculature by the decrease of environmental pH, block the blood vessel and control the release of loaded anticancer drugs.
Collapse
Affiliation(s)
- Quang Vinh Nguyen
- Theranostic Macromolecules Research Center and School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Jae Seung Lym
- Theranostic Macromolecules Research Center and School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Cong Truc Huynh
- Theranostic Macromolecules Research Center and School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
- Department of Biomedical Engineering
| | - Bong Sup Kim
- Theranostic Macromolecules Research Center and School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Hwan Jun Jae
- Department of Radiology
- Seoul National University Hospital
- Seoul
- Korea
| | - Young Il Kim
- Department of Radiology
- Seoul National University Hospital
- Seoul
- Korea
- Department of Radiology
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| |
Collapse
|