1
|
Zhang J, Ma W, Li Y, Zhong D, Zhou Z, Ma J. The resistance change and stress response mechanisms of chlorine-resistant bacteria under microplastic stress in drinking water distribution system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124331. [PMID: 38848962 DOI: 10.1016/j.envpol.2024.124331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The presence of both chlorine-resistant bacteria (CRB) and microplastics (MPs) in drinking water distribution systems (DWDS) poses a threat to water quality and human health. However, the risk of CRB bio evolution under the stress of MPs remains unclear. In this study, polypropylene (PP) and polyethylene (PE) were selected to study the adsorption and desorption behavior of sulfamethoxazole (SMX), and it was clear that MPs had the risk of carrying pollutants into DWDS and releasing them. The results of the antibiotic susceptibility test and disinfection experiment confirmed that MPs could enhance the resistance of CRB to antibiotics and disinfectants. Bacteria epigenetic resistance mechanisms were approached from multiple perspectives, including physiological and biochemical characteristics, as well as molecular regulatory networks. When MPs enter DWDS, CRB could attach to the surface of MPs and directly interact with both MPs and the antibiotics they release. This attachment process promoted changes in the composition and content of extracellular polymers (EPS) within cells, enhanced surface hydrophobicity, stimulated oxidative stress function, and notably elevated the relative abundance of certain antibiotic resistance genes (ARGs). This study elucidates the mechanism by which MPs alter the intrinsic properties of CRB, providing valuable insights into the effective avoidance of biological risks to water quality during CRB evolution.
Collapse
Affiliation(s)
- Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Chongqing Research Institute of HIT, Chongqing, 401151, China
| | - Yibing Li
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430014, China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Chongqing Research Institute of HIT, Chongqing, 401151, China.
| | - Ziyi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Tang MLY, Lau SCK. Effects of chlorination on the survival of sewage bacteria in seawater microcosms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13216. [PMID: 37990630 PMCID: PMC10866060 DOI: 10.1111/1758-2229.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Chlorination is a commonly used disinfection method in sewage treatment process. However, resistant bacteria may survive chlorination and enter the receiving aquatic environment upon effluent discharge. There has been limited research on the effects of chlorination on bacterial survival in seawater. To address this knowledge gap, microcosm experiments were conducted to simulate the discharge of chlorinated effluents into coastal seawater. The results revealed that bacterial communities in seawater-based effluents survived better in seawater than those in freshwater-based effluents. High chlorine dosages could significantly reduce the viable bacterial populations and their chance of regrowth in seawater. Additionally, faecal indicator bacteria (FIB) that entered the viable but non-culturable (VBNC) state under chlorination tended to persist in the VBNC state without resuscitation during seawater incubation. Because of the prevalence of VBNC indicator bacteria, qPCR quantification of FIB was more effective than conventional culture-based methods in tracing viable pathogenic chlorine-resistant bacteria, although the correlation strength varied depending on the type of effluent. This study sheds light on how chlorine dosages and the intrinsic properties of effluents affect bacterial survival in seawater and highlights the potential and limitations of using FIB in monitoring the health risks associated with the discharge of chlorinated effluents.
Collapse
Affiliation(s)
- Mandy Lok Yi Tang
- Department of Ocean ScienceHong Kong University of Science and TechnologyHong KongChina
| | - Stanley Chun Kwan Lau
- Department of Ocean ScienceHong Kong University of Science and TechnologyHong KongChina
- Center for Ocean Research in Hong Kong and MacauHong Kong University of Science and TechnologyHong KongChina
| |
Collapse
|
3
|
Miao X, Han X, Liu C, Bai X. Intrinsic chlorine resistance of bacteria modulated by glutaminyl-tRNA biosynthesis in drinking water supply systems. CHEMOSPHERE 2022; 308:136322. [PMID: 36084827 DOI: 10.1016/j.chemosphere.2022.136322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The existence of chlorine-resistant bacteria (CRB) in drinking water supply systems (DWSSs) results in significant challenges to the biological security of drinking water. However, little is known about the intrinsic chlorine-resistant molecular metabolic mechanism of bacteria in DWSSs. This research explored the microbial interactions and the key metabolic pathways that modulate the chlorine resistance of bacteria in full-scale chloraminated DWSSs. The dominant CRB, including Bdellovibrio, Bradyrhizobium, Peredibacter, Sphingomonas, and Hydrogenophaga, strongly interacted with each other to maintain basic metabolism. A total of 4.21% of the bacterial metabolic pathways were key and specific to chlorine-resistant bacteria. Glutaminyl-tRNA biosynthesis was the dominant metabolic pathway of CRB in the target DWSSs. After chloramine disinfection, the relative abundance of glutamate-tRNA ligase (GlnRS) and the related orthologous genes increased by 10.11% and 14.58%, respectively. The inactivation rate of the GlnRS overexpression strain (81.40%) was lower than that of the wild-type strain (90.11%) after exposure to chloramine. Meanwhile, the growth rate of the GlnRS overexpression strain was higher than that of the wild-type strain. Glutaminyl-tRNA biosynthesis can enhance chlorine resistance in DWSSs.
Collapse
Affiliation(s)
- Xiaocao Miao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xue Han
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chenxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
4
|
Jing Z, Lu Z, Mao T, Cao W, Wang W, Ke Y, Zhao Z, Wang X, Sun W. Microbial composition and diversity of drinking water: A full scale spatial-temporal investigation of a city in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145986. [PMID: 33640542 DOI: 10.1016/j.scitotenv.2021.145986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The microbiological water quality of drinking water distribution systems (DWDSs) is of primary importance for public health. The detachment of biofilm attached on the pipe wall attribution to water source switch and the occurrence of potentially pathogenic chlorine-resistant bacteria (CRB) under chlorine disinfection get lots of attention. Studies examining microbial communities after the water source switch, particularly in low-salinity water, have been scant. The UV‑chlorine combined disinfection applied in one of the investigated drinking water plants provided insight into the control of CRBs. We applied high-throughput sequencing of the 16S rRNA gene to characterize the bacterial communities of the DWDS in northern China over 1 year. A network comprising four different DWDSs was sampled at 48 sites every season (temperate continental monsoon climate), and the impact of key spatial-temporal and physicochemical parameters was investigated. Overall, the entire bacterial community was not significantly different among the four DWDSs (spatial parameter) but varied with seasons (temporal parameter). The switch in water sources might increase the relative abundance of potentially opportunistic pathogens in DWDSs. UV‑chlorine combined disinfection can decrease community diversity and is likely to control the growth of potential opportunistic pathogens in DWDSs.
Collapse
Affiliation(s)
- Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China; MW Technologies, Inc., London, Ontario, Canada
| | - Wenfeng Cao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Weibo Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| |
Collapse
|
5
|
Luo LW, Wu YH, Yu T, Wang YH, Chen GQ, Tong X, Bai Y, Xu C, Wang HB, Ikuno N, Hu HY. Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. WATER RESEARCH 2021; 188:116474. [PMID: 33039832 DOI: 10.1016/j.watres.2020.116474] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 05/21/2023]
Abstract
Chlorine-resistant bacteria (CRB) are commonly defined as bacteria with high resistance to chlorine disinfection or bacteria which can survive or even regrow in the residual chlorine. Chlorine disinfection cannot completely control the risks of CRB, such as risks of pathogenicity, antibiotic resistance and microbial growth. Currently, researchers pay more attention to CRB with pathogenicity or antibiotic resistance. The microbial growth risks of non-pathogenic CRB in water treatment and reclamation systems have been neglected to some extent. In this review, these three kinds of risks are all analyzed, and the last one is also highlighted. In order to study CRB, various methods are used to evaluate chlorine resistance. This review summarizes the evaluating methods for chlorine resistance reported in the literatures, and collects the important information about the typical isolated CRB strains including their genera, sources and levels of chlorine resistance. To our knowledge, few review papers have provided such systematic information about CRB. Among 44 typical CRB strains from 17 genera isolated by researchers, Mycobacterium, Bacillus, Legionella, Pseudomonas and Sphingomonas were the five genera with the highest frequency of occurrence in literatures. They are all pathogenic or opportunistic pathogenic bacteria. In addition, although there are many studies on CRB, information about chlorine resistance level is still limited to specie level or strain level. The difference in chlorine resistance level among different bacterial genera is less well understood. An inconvenient truth is that there is still no widely-accepted method to evaluate chlorine resistance and to identify CRB. Due to the lack of a unified method, it is difficult to compare the results about chlorine resistance level of bacterial strains in different literatures. A recommended evaluating method using logarithmic removal rate as an index and E. coli as a reference strain is proposed in this review based on the summary of the current evaluating methods. This method can provide common range of chlorine resistance of each genus and it is conducive to analyzing the distribution and abundance of CRB in the environment.
Collapse
Affiliation(s)
- Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Tong Yu
- Qingdao University of Technology, Qingdao 266000, China
| | - Yun-Hong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Gen-Qiang Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Xin Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Chuang Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| |
Collapse
|
6
|
Molecular typing of Legionella pneumophila isolates from environmental water samples and clinical samples using a five-gene sequence typing and standard Sequence-Based Typing. PLoS One 2018; 13:e0190986. [PMID: 29389983 PMCID: PMC5794064 DOI: 10.1371/journal.pone.0190986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022] Open
Abstract
Inadequate discriminatory power to distinguish between L. pneumophila isolates, especially those belonging to disease-related prevalent sequence types (STs) such as ST1, ST36 and ST47, is an issue of SBT scheme. In this study, we developed a multilocus sequence typing (MLST) scheme based on two non-virulence loci (trpA, cca) and three virulence loci (icmK, lspE, lssD), to genotype 110 L. pneumophila isolates from various natural and artificial water sources in Guangdong province of China, and compared with the SBT. The isolates were assigned to 33 STs of the SBT and 91 new sequence types (nSTs) of the MLST. The indices of discrimination (IODs) of SBT and MLST were 0.920 and 0.985, respectively. Maximum likelihood trees of the concatenated SBT and MLST sequences both showed distinct phylogenetic relationships between the isolates from the two environments. More intragenic recombinations were detected in nSTs than in STs, and they were both more abundant in natural water isolates. We found out the MLST had a high discriminatory ability for the disease-associated ST1 isolates: 22 ST1 isolates were assigned to 19 nSTs. Furthermore, we assayed the discrimination of the MLST for 29 reference strains (19 clinical and 10 environmental). The clinical strains were assigned to eight STs and ten nSTs. The MLST could also subtype the prevalent clinical ST36 or ST47 strains: eight ST36 strains were subtyped into three nSTs and two ST47 strains were subtyped into two nSTs. We found different distribution patterns of nSTs between the environmental and clinical ST36 isolates, and between the outbreak clinical ST36 isolates and the sporadic clinical ST36 isolates. These results together revealed the MLST scheme could be used as part of a typing scheme that increased discrimination when necessary.
Collapse
|
7
|
Ishizaki N, Sogawa K, Inoue H, Agata K, Edagawa A, Miyamoto H, Fukuyama M, Furuhata K. Legionella thermalis sp. nov., isolated from hot spring water in Tokyo, Japan. Microbiol Immunol 2017; 60:203-8. [PMID: 26865126 DOI: 10.1111/1348-0421.12366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/24/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
Strain L-47(T) of a novel bacterial species belonging to the genus Legionella was isolated from a sample of hot spring water from Tokyo, Japan. The 16S rRNA gene sequences (1477 bp) of this strain (accession number AB899895) had less than 95.0% identity with other Legionella species. The dominant fatty acids of strain L-47(T) were a15:0 (29.6%) and the major ubiquinone was Q-12 (71.1%). It had a guanine-plus-cytosine content of 41.5 mol%. The taxonomic description of Legionella thermalis sp. nov. is proposed to be type strain L-47(T) (JCM 30970(T) = KCTC 42799(T)).
Collapse
Affiliation(s)
- Naoto Ishizaki
- School of Life and Environmental Science, Azabu University, Kanagawa, 252-5201
| | - Kazuyuki Sogawa
- School of Life and Environmental Science, Azabu University, Kanagawa, 252-5201
| | - Hiroaki Inoue
- Tsukuba Research Laboratories, Aquas Corporation, Ibaraki, 300-2646
| | - Kunio Agata
- Tsukuba Research Laboratories, Aquas Corporation, Ibaraki, 300-2646
| | - Akiko Edagawa
- Department of Environmental Health, Osaka Prefectural Institute of Public Health, Osaka, 537-0025.,Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | | | - Masafumi Fukuyama
- School of Life and Environmental Science, Azabu University, Kanagawa, 252-5201
| | - Katsunori Furuhata
- School of Life and Environmental Science, Azabu University, Kanagawa, 252-5201
| |
Collapse
|
8
|
Shi X, Lin Y, Qiu Y, Li Y, Jiang M, Chen Q, Jiang Y, Yuan J, Cao H, Hu Q, Huang S. Comparative Screening of Digestion Tract Toxic Genes in Proteus mirabilis. PLoS One 2016; 11:e0151873. [PMID: 27010388 PMCID: PMC4807080 DOI: 10.1371/journal.pone.0151873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/04/2016] [Indexed: 11/18/2022] Open
Abstract
Proteus mirabilis is a common urinary tract pathogen, and may induce various inflammation symptoms. Its notorious ability to resist multiple antibiotics and to form urinary tract stones makes its treatment a long and painful process, which is further challenged by the frequent horizontal gene transferring events in P. mirabilis genomes. Three strains of P. mirabilis C02011/C04010/C04013 were isolated from a local outbreak of a food poisoning event in Shenzhen, China. Our hypothesis is that new genes may have been acquired horizontally to exert the digestion tract infection and toxicity. The functional characterization of these three genomes shows that each of them independently acquired dozens of virulent genes horizontally from the other microbial genomes. The representative strain C02011 induces the symptoms of both vomit and diarrhea, and has recently acquired a complete type IV secretion system and digestion tract toxic genes from the other bacteria.
Collapse
Affiliation(s)
- Xiaolu Shi
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yiman Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianhui Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hong Cao
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- * E-mail: (QHH); (SHH)
| | - Shenghe Huang
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- * E-mail: (QHH); (SHH)
| |
Collapse
|
9
|
FURUHATA KATSUNORI, ISHIZAKI NAOTO, UMEKAWA NAO, NISHIZIMA MIYUKI, FUKUYAMA MASAFUMI. Pulsed-Field Gel Electrophoresis (PFGE) Pattern Analysis and Chlorine-Resistance of Legionella pneumophila Isolated from Hot Spring Water Samples. Biocontrol Sci 2014; 19:33-8. [DOI: 10.4265/bio.19.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|