1
|
Álvarez-Barragán J, Cravo-Laureau C, Xiong B, Wick LY, Duran R. Marine Fungi Select and Transport Aerobic and Anaerobic Bacterial Populations from Polycyclic Aromatic Hydrocarbon-Contaminated Sediments. mBio 2023; 14:e0276122. [PMID: 36786561 PMCID: PMC10127579 DOI: 10.1128/mbio.02761-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
The organization of microbial communities in marine sediment relies on complex biotic and abiotic interactions. Among them, the interaction between fungi and bacteria plays a crucial role building specific microbial assemblages, resulting in metabolic networks adapted to environmental conditions. The fungal-bacterial interaction (FBI) includes bacterial translocation via fungal mycelia, allowing bacterial dispersion, and ecological niche colonization. In order to demonstrate that the translocation of bacteria through fungal mycelia involves bacterial selection, the mycelia of two fungi isolated from marine coastal sediment, Alternaria destruens F10.81 and Fusarium pseudonygamai F5.76, showing different strategies for uptake of polycyclic aromatic hydrocarbon (PAH), homogenous internalization and vacuole forming respectively, were used to translocate bacteria through hydrophobic hydrocarbon contaminated sediments. A. destruens F10.81 selected four specific bacteria, while bacterial selection by F. pseudonygamai F5.76 was not evident. Among the bacteria selected by A. destruens F10.81, Spirochaeta litoralis, known as strictly anaerobic bacterium, was identified, indicating that A. destruens F10.81 selects and transports both aerobic and anaerobic bacteria. Such a result is consistent with the observed formation of anoxic micro-niches in areas surrounding and affected by fungal hyphae. Our findings provide new insights on the selection and dispersion of bacterial communities by fungi, which are crucial for the organization of microbial communities and their functioning in coastal PAH-contaminated sediments. IMPORTANCE The study provides advances for understanding fungal-bacterial relationships, particularly on the selection and dispersion of bacterial communities by fungi, which are crucial for the organization of microbial communities and their functioning in coastal PAH-contaminated sediments. The transportation of bacteria via fungal hyphae (fungal highway) results in bacterial selection; in particular, fungal hyphae offer adequate conditions for the transport of both aerobic and anaerobic bacteria through hydrophobic patches for the colonization of novel niches.
Collapse
Affiliation(s)
| | | | - Bijing Xiong
- Helmholtz Centre for Environmental Research–UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research–UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Robert Duran
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
2
|
Raiyani NM, Singh SP. Microbial community and predictive functionalities associated with the marine sediment of Coastal Gujarat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43245-43266. [PMID: 36650368 DOI: 10.1007/s11356-023-25196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Marine sediments are complex ecosystems where structures and functions constantly change due to natural and anthropogenic influences. In this investigation, a comprehensive and comparative analysis of the bacterial communities and their functional potential of the pristine and polluted marine sediments were carried out using MiSeq. The phylum Proteobacteria was dominant in all study sites. Other phyla were Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Chloroflexi, Nitrospirae, Cyanobacteria, Verrucomicrobia, Tenericutes, and Chlorobi. Interestingly, about 50% of genera belong to the unclassified categories. The key genera were identified as Acinetobacter, Bacillus, Pseudomona, Idiomarina, Thalassospira, and Marinobacter, Halomonas, Planctomyces, Psychrobacter, and Vogesella. PICRUSt analysis revealed that major functions are associated with the metabolism category. Additionally, metabolism related to amino acids, carbohydrates, energy generation, xenobiotics degradation, nitrogen, sulfate, and methane were prominent. Similarly, the predicted metabolisms by COG and KEGG were observed in the microbial communities of the marine sediments. To date, a comprehensive description of the microbial life with metabolic potential in these study sites has not been investigated. This study therefore significantly adds to our understanding of the microbiome and its functional attributes of marine sediments.
Collapse
Affiliation(s)
- Nirali M Raiyani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360 005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360 005, Gujarat, India.
| |
Collapse
|
3
|
Loza A, García-Guevara F, Segovia L, Escobar-Zepeda A, Sanchez-Olmos MDC, Merino E, Sanchez-Flores A, Pardo-Lopez L, Juarez K, Gutierrez-Rios RM. Definition of the Metagenomic Profile of Ocean Water Samples From the Gulf of Mexico Based on Comparison With Reference Samples From Sites Worldwide. Front Microbiol 2022; 12:781497. [PMID: 35178038 PMCID: PMC8846951 DOI: 10.3389/fmicb.2021.781497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Computational and statistical analysis of shotgun metagenomes can predict gene abundance and is helpful for elucidating the functional and taxonomic compositions of environmental samples. Gene products are compared against physicochemical conditions or perturbations to shed light on the functions performed by the microbial community of an environmental sample; however, this information is not always available. The present study proposes a method for inferring the metabolic potential of metagenome samples by constructing a reference based on determining the probability distribution of the counts of each enzyme annotated. To test the methodology, we used marine water samples distributed worldwide as references. Then, the references were utilized to compare the annotated enzymes of two different water samples extracted from the Gulf of Mexico (GoM) to distinguish those enzymes with atypical behavior. The enzymes whose annotation counts presented frequencies significantly different from those of the reference were used to perform metabolic reconstruction, which naturally identified pathways. We found that several of the enzymes were involved in the biodegradation of petroleum, which is consistent with the impact of human hydrocarbon extraction activity and its ubiquitous presence in the GoM. The examination of other reconstructed pathways revealed significant enzymes indicating the presence of microbial communities characterizing each ocean depth and ocean cycle, providing a fingerprint of each sampled site.
Collapse
|
4
|
Dell'Anno F, Brunet C, van Zyl LJ, Trindade M, Golyshin PN, Dell'Anno A, Ianora A, Sansone C. Degradation of Hydrocarbons and Heavy Metal Reduction by Marine Bacteria in Highly Contaminated Sediments. Microorganisms 2020; 8:E1402. [PMID: 32933071 PMCID: PMC7564820 DOI: 10.3390/microorganisms8091402] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Investigations on the ability of bacteria to enhance removal of hydrocarbons and reduce heavy metal toxicity in sediments are necessary to design more effective bioremediation strategies. In this study, five bacterial strains, Halomonas sp. SZN1, Alcanivorax sp. SZN2, Pseudoalteromonas sp. SZN3, Epibacterium sp. SZN4, and Virgibacillus sp. SZN7, were isolated from polluted sediments from an abandoned industrial site in the Gulf of Naples, Mediterranean Sea, and tested for their bioremediation efficiency on sediment samples collected from the same site. These bacteria were added as consortia or as individual cultures into polluted sediments to assess biodegradation efficiency of polycyclic aromatic hydrocarbons and heavy metal immobilisation capacity. Our results indicate that these bacteria were able to remove polycyclic aromatic hydrocarbons, with a removal rate up to ca. 80% for dibenzo-anthracene. In addition, these bacteria reduced arsenic, lead, and cadmium mobility by promoting their partitioning into less mobile and bioavailable fractions. Microbial consortia generally showed higher performance toward pollutants as compared with pure isolates, suggesting potential synergistic interactions able to enhance bioremediation capacity. Overall, our findings suggest that highly polluted sediments select for bacteria efficient at reducing the toxicity of hazardous compounds, paving the way for scaled-up bioremediation trials.
Collapse
Affiliation(s)
- Filippo Dell'Anno
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy
| | - Leonardo Joaquim van Zyl
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Peter N Golyshin
- Centre for Environmental Biotechnology (CEB), School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Antonio Dell'Anno
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
5
|
Muangchinda C, Srisuwankarn P, Boubpha S, Chavanich S, Pinyakong O. The effect of bioaugmentation with Exiguobacterium sp. AO-11 on crude oil removal and the bacterial community in sediment microcosms, and the development of a liquid ready-to-use inoculum. CHEMOSPHERE 2020; 250:126303. [PMID: 32120151 DOI: 10.1016/j.chemosphere.2020.126303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 05/15/2023]
Abstract
This study demonstrates the feasibility of using Exiguobacterium sp. AO-11 to remediate oil-contaminated environments. Bioaugmentation using AO-11 showed the best removal percentage, 75%, of 4% (w/w) crude oil in sediment microcosms in 100 days. In terms of the bacterial community structure during crude oil degradation, the addition of AO-11 did not change the indigenous bacterial community, while the addition of urea fertilizer induced structural shift of indigenous bacterial community. Exiguobacterium sp. AO-11 was developed as a bioremediation product, and a liquid formulation of AO-11 was developed. Coconut milk residue and soybean oil mill sludge were used for bacterial cultivation to reduce the production cost, and they could enhance bacterial cell growth. The liquid formulation of AO-11 prepared in phosphate buffer could be stored at 4 °C for at least 2 months, and it maintained efficacy in the treatment of crude oil-contaminated seawater. Overall, bioaugmentation with strain AO-11 could be an effective solution for the bioremediation of crude oil-contaminated environments.
Collapse
Affiliation(s)
- Chanokporn Muangchinda
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phadungkwan Srisuwankarn
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Interdisciplinary Program in Environmental Science, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sysouvanh Boubpha
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suchana Chavanich
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand; Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Thailand.
| |
Collapse
|