1
|
Arthur M, Afari EL, Alexa EA, Zhu MJ, Gaffney MT, Celayeta JMF, Burgess CM. Recent advances in examining the factors influencing the efficacy of biocides against Listeria monocytogenes biofilms in the food industry: A systematic review. Compr Rev Food Sci Food Saf 2025; 24:e70083. [PMID: 39736097 DOI: 10.1111/1541-4337.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025]
Abstract
Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L. monocytogenes biofilm, as laboratory-based and commercial studies have reported the persistence of this bacterium after cleaning and disinfection. This review systematically examined scientific studies, sourced from the Web of Science, Scopus, and PubMed databases between January 2010 and May 2024, that investigated the effectiveness of the most commonly used biocides in the food industry against L. monocytogenes biofilms. A total of 92 articles which met the screening criteria, were included, with studies utilizing biocides containing sodium hypochlorite, quaternary ammonium compounds, and peroxyacetic acid being predominant. Studies indicated that several key factors may potentially influence biocides' efficacy against L. monocytogenes biofilms. These factors included strain type (persistent, sporadic), serotype, strain origin (clinical, environmental, or food), surface type (biotic or abiotic), surface material (stainless steel, polystyrene, etc.), incubation time (biofilm age) and temperature, presence of organic matter, biocide's active agent, and the co-culture of L. monocytogenes with other bacteria. The induction of the viable but nonculturable (VBNC) state following disinfection is also a critical concern. This review aims to provide a global understanding of how L. monocytogenes biofilms respond to biocides under different treatment conditions, facilitating the development of effective cleaning and disinfection strategies in the food industry.
Collapse
Affiliation(s)
- Michael Arthur
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Edmund Larbi Afari
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Elena-Alexandra Alexa
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Michael T Gaffney
- Horticulture Development Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | | | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
2
|
da Cruz Nizer WS, Allison KN, Adams ME, Vargas MA, Ahmed D, Beaulieu C, Raju D, Cassol E, Howell PL, Overhage J. The role of exopolysaccharides Psl and Pel in resistance of Pseudomonas aeruginosa to the oxidative stressors sodium hypochlorite and hydrogen peroxide. Microbiol Spectr 2024; 12:e0092224. [PMID: 39194290 PMCID: PMC11448232 DOI: 10.1128/spectrum.00922-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
Pseudomonas aeruginosa is well-known for its antimicrobial resistance and the ability to survive in harsh environmental conditions due to an abundance of resistance mechanisms, including the formation of biofilms and the production of exopolysaccharides. Exopolysaccharides are among the major components of the extracellular matrix in biofilms and aggregates of P. aeruginosa. Although their contribution to antibiotic resistance has been previously shown, their roles in resistance to oxidative stressors remain largely elusive. Here, we studied the function of the exopolysaccharides Psl and Pel in the resistance of P. aeruginosa to the commonly used disinfectants and strong oxidizing agents NaOCl and H2O2. We observed that the simultaneous inactivation of Psl and Pel in P. aeruginosa PAO1 mutant strain ∆pslA pelF resulted in a significant increase in susceptibility to both NaOCl and H2O2. Further analyses revealed that Pel is more important for oxidative stress resistance in P. aeruginosa and that the form of Pel (i.e., cell-associated or cell-free) did not affect NaOCl susceptibility. Additionally, we show that Psl/Pel-negative strains are protected against oxidative stress in co-culture biofilms with P. aeruginosa PAO1 WT. Taken together, our results demonstrate that the EPS matrix and, more specifically, Pel exhibit protective functions against oxidative stressors such as NaOCl and H2O2 in P. aeruginosa. IMPORTANCE Biofilms are microbial communities of cells embedded in a self-produced polymeric matrix composed of polysaccharides, proteins, lipids, and extracellular DNA. Biofilm bacteria have been shown to possess unique characteristics, including increased stress resistance and higher antimicrobial tolerance, leading to failures in bacterial eradication during chronic infections or in technical settings, including drinking and wastewater industries. Previous studies have shown that in addition to conferring structure and stability to biofilms, the polysaccharides Psl and Pel are also involved in antibiotic resistance. This work provides evidence that these biofilm matrix components also contribute to the resistance of Pseudomonas aeruginosa to oxidative stressors including the widely used disinfectant NaOCl. Understanding the mechanisms by which bacteria escape antimicrobial agents, including strong oxidants, is urgently needed in the fight against antimicrobial resistance and will help in developing new strategies to eliminate resistant strains in any environmental, industrial, and clinical setting.
Collapse
Affiliation(s)
| | - Kira N. Allison
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Madison E. Adams
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Mario A. Vargas
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Carole Beaulieu
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Deepa Raju
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - P. Lynne Howell
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Tuytschaever T, Faille C, Raes K, Sampers I. Influence of slope, material, and temperature on Listeria monocytogenes and Pseudomonas aeruginosa mono- and dual-species biofilms. BIOFOULING 2024; 40:467-482. [PMID: 39054784 DOI: 10.1080/08927014.2024.2380410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Understanding factors influencing Listeria monocytogenes biofilms aid in developing more effective elimination/prevention strategies. This study examined the effect of temperature (4 °C, 21 °C, 30 °C), materials (stainless steel 316 L with 2B and 2 R finishes, glass, and polypropylene), and slope (0°/horizontal or 90°/vertical) on mono- and dual-species biofilms using two L. monocytogenes strains and one Pseudomonas aeruginosa strain. All biofilms were grown in 10% TSB for 24 h and analyzed using culture-based methods. Additionally, the architecture of monospecies biofilms was studied using fluorescence microscopy. Overall, P. aeruginosa showed higher biofilm formation potential (6.2 log CFU/cm2) than L. monocytogenes (4.0 log CFU/cm2). Temperature greatly influenced P. aeruginosa and varied for L. monocytogenes. The slope predominantly influenced L. monocytogenes monospecies biofilms, with cell counts increasing by up to 2 log CFU/cm2. Surface material had little impact on biofilm formation. The study highlights the varying effects of different parameters on multispecies biofilms and the importance of surface geometry.
Collapse
Affiliation(s)
- Tessa Tuytschaever
- Research Unit VEG-i-TEC, Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Kortrijk, Belgium
| | - Christine Faille
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Kortrijk, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Kortrijk, Belgium
| |
Collapse
|
4
|
da Cruz Nizer WS, Adams ME, Allison KN, Montgomery MC, Mosher H, Cassol E, Overhage J. Oxidative stress responses in biofilms. Biofilm 2024; 7:100203. [PMID: 38827632 PMCID: PMC11139773 DOI: 10.1016/j.bioflm.2024.100203] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
Oxidizing agents are low-molecular-weight molecules that oxidize other substances by accepting electrons from them. They include reactive oxygen species (ROS), such as superoxide anions (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (HO-), and reactive chlorine species (RCS) including sodium hypochlorite (NaOCl) and its active ingredient hypochlorous acid (HOCl), and chloramines. Bacteria encounter oxidizing agents in many different environments and from diverse sources. Among them, they can be produced endogenously by aerobic respiration or exogenously by the use of disinfectants and cleaning agents, as well as by the mammalian immune system. Furthermore, human activities like industrial effluent pollution, agricultural runoff, and environmental activities like volcanic eruptions and photosynthesis are also sources of oxidants. Despite their antimicrobial effects, bacteria have developed many mechanisms to resist the damage caused by these toxic molecules. Previous research has demonstrated that growing as a biofilm particularly enhances bacterial survival against oxidizing agents. This review aims to summarize the current knowledge on the resistance mechanisms employed by bacterial biofilms against ROS and RCS, focussing on the most important mechanisms, including the formation of biofilms in response to oxidative stressors, the biofilm matrix as a protective barrier, the importance of detoxifying enzymes, and increased protection within multi-species biofilm communities. Understanding the complexity of bacterial responses against oxidative stress will provide valuable insights for potential therapeutic interventions and biofilm control strategies in diverse bacterial species.
Collapse
Affiliation(s)
| | - Madison Elisabeth Adams
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Kira Noelle Allison
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | | | - Hailey Mosher
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| |
Collapse
|
5
|
Purk L, Kitsiou M, Ioannou C, El Kadri H, Costello KM, Gutierrez Merino J, Klymenko O, Velliou EG. Unravelling the impact of fat content on the microbial dynamics and spatial distribution of foodborne bacteria in tri-phasic viscoelastic 3D models. Sci Rep 2023; 13:21811. [PMID: 38071223 PMCID: PMC10710490 DOI: 10.1038/s41598-023-48968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of the current study is to develop and characterise novel complex multi-phase in vitro 3D models, for advanced microbiological studies. More specifically, we enriched our previously developed bi-phasic polysaccharide (Xanthan Gum)/protein (Whey Protein) 3D model with a fat phase (Sunflower Oil) at various concentrations, i.e., 10%, 20%, 40% and 60% (v/v), for better mimicry of the structural and biochemical composition of real food products. Rheological, textural, and physicochemical analysis as well as advanced microscopy imaging (including spatial mapping of the fat droplet distribution) of the new tri-phasic 3D models revealed their similarity to industrial food products (especially cheese products). Furthermore, microbial growth experiments of foodborne bacteria, i.e., Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa and Lactococcus lactis on the surface of the 3D models revealed very interesting results, regarding the growth dynamics and distribution of cells at colony level. More specifically, the size of the colonies formed on the surface of the 3D models, increased substantially for increasing fat concentrations, especially in mid- and late-exponential growth phases. Furthermore, colonies formed in proximity to fat were substantially larger as compared to the ones that were located far from the fat phase of the models. In terms of growth location, the majority of colonies were located on the protein/polysaccharide phase of the 3D models. All those differences at microscopic level, that can directly affect the bacterial response to decontamination treatments, were not captured by the macroscopic kinetics (growth dynamics), which were unaffected from changes in fat concentration. Our findings demonstrate the importance of developing structurally and biochemically complex 3D in vitro models (for closer proximity to industrial products), as well as the necessity of conducting multi-level microbial analyses, to better understand and predict the bacterial behaviour in relation to their biochemical and structural environment. Such studies in advanced 3D environments can assist a better/more accurate design of industrial antimicrobial processes, ultimately, improving food safety.
Collapse
Affiliation(s)
- Lisa Purk
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK
| | - Melina Kitsiou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK
| | - Christina Ioannou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Oleksiy Klymenko
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK.
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK.
| |
Collapse
|
6
|
Tuytschaever T, Raes K, Sampers I. Listeria monocytogenes in food businesses: From persistence strategies to intervention/prevention strategies-A review. Compr Rev Food Sci Food Saf 2023; 22:3910-3950. [PMID: 37548605 DOI: 10.1111/1541-4337.13219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
In 2023, Listeria monocytogenes persistence remains a problem in the food business. A profound understanding of how this pathogen persists may lead to better aimed intervention/prevention strategies. The lack of a uniform definition of persistence makes the comparison between studies complex. Harborage sites offer protection against adverse environmental conditions and form the ideal habitat for the formation of biofilms, one of the major persistence strategies. A retarded growth rate, disinfectant resistance/tolerance, desiccation resistance/tolerance, and protozoan protection complete the list of persistence strategies for Listeria monocytogenes and can occur on themselves or in combination with biofilms. Based on the discussed persistence strategies, intervention strategies are proposed. By enhancing the focus on four precaution principles (cleaning and disinfection, infrastructure/hygienic design, technical maintenance, and work methodology) as mentioned in Regulation (EC) No. 852/2004, the risk of persistence can be decreased. All of the intervention strategies result in obtaining and maintaining a good general hygiene status throughout the establishment at all levels ranging from separate equipment to the entire building.
Collapse
Affiliation(s)
- Tessa Tuytschaever
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| |
Collapse
|
7
|
Sadanandan B, Vijayalakshmi V, Ashrit P, Babu UV, Sharath Kumar LM, Sampath V, Shetty K, Joglekar AP, Awaknavar R. Aqueous spice extracts as alternative antimycotics to control highly drug resistant extensive biofilm forming clinical isolates of Candida albicans. PLoS One 2023; 18:e0281035. [PMID: 37315001 PMCID: PMC10266687 DOI: 10.1371/journal.pone.0281035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Candida albicans form biofilm by associating with biotic and abiotic surfaces. Biofilm formation by C. albicans is relevant and significant as the organisms residing within, gain resistance to conventional antimycotics and are therefore difficult to treat. This study targeted the potential of spice-based antimycotics to control C. albicans biofilms. Ten clinical isolates of C. albicans along with a standard culture MTCC-3017 (ATCC-90028) were screened for their biofilm-forming ability. C. albicans M-207 and C. albicans S-470 were identified as high biofilm formers by point inoculation on Trypticase Soy Agar (TSA) medium as they formed a lawn within 16 h and exhibited resistance to fluconazole and caspofungin at 25 mcg and 8 mcg respectively. Aqueous and organic spice extracts were screened for their antimycotic activity against C. albicans M-207 and S-470 by agar and disc diffusion and a Zone of Inhibition was observed. Minimal Inhibitory Concentration was determined based on growth absorbance and cell viability measurements. The whole aqueous extract of garlic inhibited biofilms of C. albicans M-207, whereas whole aqueous extracts of garlic, clove, and Indian gooseberry were effective in controlling C. albicans S-470 biofilm within 12 h of incubation. The presence of allicin, ellagic acid, and gallic acid as dominant compounds in the aqueous extracts of garlic, clove, and Indian gooseberry respectively was determined by High-Performance Thin Layer Chromatography and Liquid Chromatography-Mass Spectrometry. The morphology of C. albicans biofilm at different growth periods was also determined through bright field microscopy, phase contrast microscopy, and fluorescence microscopy. The results of this study indicated that the alternate approach in controlling high biofilm-forming, multi-drug resistant clinical isolates of C. albicans M-207 and S-470 using whole aqueous extracts of garlic, clove, and Indian gooseberry is a safe, potential, and cost-effective one that can benefit the health care needs with additional effective therapeutics to treat biofilm infections.
Collapse
Affiliation(s)
- Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | | | - Priya Ashrit
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Uddagiri Venkanna Babu
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | | | - Vasulingam Sampath
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | | | - Rashmi Awaknavar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Chen Q, Zhang X, Wang Q, Yang J, Zhong Q. The mixed biofilm formed by Listeria monocytogenes and other bacteria: Formation, interaction and control strategies. Crit Rev Food Sci Nutr 2023; 64:8570-8586. [PMID: 37070220 DOI: 10.1080/10408398.2023.2200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Listeria monocytogenes is an important foodborne pathogen. It can adhere to food or food contact surface for a long time and form biofilm, which will lead to equipment damage, food deterioration, and even human diseases. As the main form of bacteria to survive, the mixed biofilms often exhibit higher resistance to disinfectants and antibiotics, including the mixed biofilms formed by L. monocytogenes and other bacteria. However, the structure and interspecific interaction of the mixed biofilms are very complex. It remains to be explored what role the mixed biofilm could play in the food industry. In this review, we summarized the formation and influence factors of the mixed biofilm developed by L. monocytogenes and other bacteria, as well as the interspecific interactions and the novel control measures in recent years. Moreover, the future control strategies are prospected, in order to provide theoretical basis and reference for the research of the mixed biofilms and the targeted control measures.
Collapse
Affiliation(s)
- Qingying Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xingguo Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingqing Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jingxian Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Rodríguez-López P, Rodríguez-Herrera JJ, López Cabo M. Architectural Features and Resistance to Food-Grade Disinfectants in Listeria monocytogenes- Pseudomonas spp. Dual-Species Biofilms. Front Microbiol 2022; 13:917964. [PMID: 35756028 PMCID: PMC9218357 DOI: 10.3389/fmicb.2022.917964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is considered a foodborne pathogen of serious concern capable of forming multispecies biofilms with other bacterial species, such as Pseudomonas spp., adhered onto stainless steel (SS) surfaces. In an attempt to link the biofilms' morphology and resistance to biocides, dual-species biofilms of L. monocytogenes, in co-culture with either Pseudomonas aeruginosa, Pseudomonas fluorescens, or Pseudomonas putida, were assayed to ascertain their morphological characteristics and resistance toward benzalkonium chloride (BAC) and neutral electrolyzed water (NEW). Epifluorescence microscopy analysis revealed that each dual-species biofilm was distributed differently over the SS surface and that these differences were attributable to the presence of Pseudomonas spp. Confocal laser scanning microscopy (CLSM) assays demonstrated that despite these differences in distribution, all biofilms had similar maximum thicknesses. Along with this, colocalization analyses showed a strong trend of L. monocytogenes to share location within the biofilm with all Pseudomonas assayed whilst the latter distributed throughout the surface independently of the presence of L. monocytogenes, a fact that was especially evident in those biofilms in which cell clusters were present. Finally, a modified Gompertz equation was used to fit biofilms' BAC and NEW dose-response data. Outcomes demonstrated that L. monocytogenes was less susceptible to BAC when co-cultured with P. aeruginosa or P. fluorescens, whereas susceptibility to NEW was reduced in all three dual-species biofilms, which can be attributable to both the mechanism of action of the biocide and the architectural features of each biofilm. Therefore, the results herein provided can be used to optimize already existing and develop novel target-specific sanitation treatments based on the mechanism of action of the biocide and the biofilms' species composition and structure.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain
| | | | | |
Collapse
|
10
|
Antibiofilm Effects of Heated Scallop Shell Powder on Campylobacter jejuni Biofilms. MEMBRANES 2021; 12:membranes12010043. [PMID: 35054569 PMCID: PMC8779294 DOI: 10.3390/membranes12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
Methods to reuse large numbers of scallop shells from the harvesting regions of Japan are being explored. The major component of scallop shells is calcium carbonate (CaCO3), which forms the powerful bactericidal agent, calcium oxide (CaO), when heated. Heated scallop shell powder (HSSP) exhibits strong and broad-spectrum antimicrobial activity against bacteria, fungi, and viruses. This study investigated the antibiofilm activity of HSSP against the biofilms of Campylobacter jejuni, which is the predominant species in campylobacteriosis. Biofilm samples of C. jejuni were prepared on 0.45 µm filter paper under microaerobic conditions. The HSSP treatment inactivated and eradicated C. jejuni biofilms. The resistance of C. jejuni biofilms to HSSP was significantly higher than that of the floating cells. Moreover, the antibiofilm activity of the HSSP treatment against C. jejuni biofilms was higher than that of NaOH treatment at the same pH. These results indicated that HSSP treatment is an effective method for controlling C. jejuni biofilms.
Collapse
|
11
|
Wales A, Taylor E, Davies R. Review of food grade disinfectants that are permitted for use in egg packing centres. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.1990741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Andrew Wales
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Emma Taylor
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Robert Davies
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, UK
| |
Collapse
|
12
|
Fagerlund A, Langsrud S, Møretrø T. Microbial diversity and ecology of biofilms in food industry environments associated with Listeria monocytogenes persistence. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Toushik SH, Mizan MFR, Hossain MI, Ha SD. Fighting with old foes: The pledge of microbe-derived biological agents to defeat mono- and mixed-bacterial biofilms concerning food industries. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|