1
|
Sauget M, Richard M, Chassagne S, Hocquet D, Bertrand X, Jeanvoine A. Validation of quantitative real-time PCR for detection of Legionella pneumophila in hospital water networks. J Hosp Infect 2023:S0195-6701(23)00195-0. [PMID: 37353007 DOI: 10.1016/j.jhin.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Rapid monitoring of Legionella pneumophila (Lp) is essential to reduce the risk of Legionnaires' disease in healthcare facilities. However, culture results take at least eight days, delaying the implementation of corrective measures. Here, we assessed the performance of a qPCR method and determined qPCR action thresholds for the detection of Lp in hospital hot water networks (HWNs). METHODS Hot water samples (n=459) were collected from a hospital HWNs. Lp were quantified using iQ-Check® Quanti real-time PCR Quantification kits (Bio-Rad) and the results were compared with those of culture. qPCR thresholds corresponding to the culture action thresholds of 10 and 1,000 CFU/L were determined on a training dataset and validated on an independent dataset. RESULTS Lp concentrations measured by culture and qPCR were correlated for both the training dataset (Spearman's correlation coefficient ρ = 0.687, p-value < 0.0001) and the validation dataset (ρ = 0.661, p-value < 0.0001). Lp qPCR positivity thresholds corresponding to culture action thresholds of 10 CFU/L was 91 genome units (GU) per liter (sensitivity, 86.4%; negative predictive value - NPV, 93.3%) and that corresponding to culture action thresholds of 1,000 CFU/L was 1,048 GU/L (sensitivity, 100%; NPV, 100%). CONCLUSION Detection of Lp by qPCR could be implemented with confidence in hospitals as a complement to culture in the monitoring strategy to speed up the implementation of corrective measures.
Collapse
Affiliation(s)
- Marlène Sauget
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France; Centre de Ressources Biologiques, Centre Hospitalier Universitaire de Besançon, Besançon, France.
| | - Marion Richard
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France; Centre de Ressources Biologiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Sophie Chassagne
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Didier Hocquet
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France; Chrono-environnement, Université de Franche-Comté, CNRS, Besançon, France; Centre de Ressources Biologiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Xavier Bertrand
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France; Chrono-environnement, Université de Franche-Comté, CNRS, Besançon, France
| | - Audrey Jeanvoine
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France
| |
Collapse
|
2
|
Rahmatika I, Kurisu F, Furumai H, Kasuga I. Dynamics of the Microbial Community and Opportunistic Pathogens after Water Stagnation in the Premise Plumbing of a Building. Microbes Environ 2022; 37. [PMID: 35321996 PMCID: PMC8958293 DOI: 10.1264/jsme2.me21065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In premise plumbing, microbial water quality may deteriorate under certain conditions, such as stagnation. Stagnation results in a loss of disinfectant residual, which may lead to the regrowth of microorganisms, including opportunistic pathogens. In the present study, microbial regrowth was investigated at eight faucets in a building over four seasons in one year. Water samples were obtained before and after 24 h of stagnation. In the first 100 mL after stagnation, total cell counts measured by flow cytometry increased 14- to 220-fold with a simultaneous decrease in free chlorine from 0.17–0.36 mg L–1 to <0.02 mg L–1. After stagnation, total cell counts were not significantly different among seasons; however, the composition of the microbial community varied seasonally. The relative abundance of Pseudomonas spp. was dominant in winter, whereas Sphingomonas spp. were dominant in most faucets after stagnation in other seasons. Opportunistic pathogens, such as Legionella pneumophila, Mycobacterium avium, Pseudomonas aeruginosa, and Acanthamoeba spp., were below the quantification limit for real-time quantitative PCR in all samples. However, sequences related to other opportunistic pathogens, including L. feeleii, L. maceachernii, L. micdadei, M. paragordonae, M. gordonae, and M. haemophilum, were detected. These results indicate that health risks may increase after stagnation due to the regrowth of opportunistic pathogens.
Collapse
Affiliation(s)
- Iftita Rahmatika
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo
| | - Ikuro Kasuga
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
3
|
Luqman M, Awan MUF, Muhammad S, Daud S, Yousafzai A, Arooj F. Microbial pollution in inland recreational freshwaters of Quetta, Pakistan: an initial report. JOURNAL OF WATER AND HEALTH 2022; 20:575-588. [PMID: 35350009 DOI: 10.2166/wh.2022.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Parasitic contamination of surface waters, especially recreational waters, is a serious problem for under-developed nations like Pakistan, where numerous outbreaks of parasitic diseases are reported each year. In the current study, parasitic presence in two surface waters (Hanna Lake and Wali-Tangi Dam) of Quetta was monitored quarterly for 1 year. The methodology involved the pre-concentration of the water samples and the subsequent preparation for the microscopic search of parasites. Physico-chemical and bacteriological variables were also studied. Wet staining, modified Trichrome staining, and modified acid-fast staining methods were used to identify various parasitic forms (cysts, oocysts, eggs, trophozoites). Collectively 11 parasitic elements (10 in Lake and 8 in Dam) belonging to 10 species were recorded, many of which are potential human pathogens. The species identified include Trichomonas sp., Isospora sp., Balantidium coli, Cryptosporidium sp., Entamoeba spp., amoebas, Microsporidium sp., Endolimax nana, Ascaris lumbricoides, and Giardia spp. Parasitic contamination remained persistent in both locations throughout the year independent of physico-chemical parameters (temperature, EC, pH, turbidity, and DO) and bacterial concentration of water. Reliance on bacterial presence for monitoring of recreational waters can be a risk for tourists. Entamoeba spp. and A. lumbricoides may be used for surface water monitoring in these waters.
Collapse
Affiliation(s)
- Muhammad Luqman
- Department of Environment Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan E-mail:
| | | | - Sohaib Muhammad
- Department of Botany, Government College University, Kachehry Road, Lahore, Pakistan
| | - Shakeela Daud
- Department of Biotechnology, BUITEMS, Baleli Road, Quetta, Pakistan
| | - Asma Yousafzai
- Department of Biotechnology, BUITEMS, Baleli Road, Quetta, Pakistan
| | - Fariha Arooj
- Department of Environment Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan E-mail:
| |
Collapse
|
4
|
Water Age Effects on the Occurrence and Concentration of Legionella Species in the Distribution System, Premise Plumbing, and the Cooling Towers. Microorganisms 2021; 10:microorganisms10010081. [PMID: 35056530 PMCID: PMC8778510 DOI: 10.3390/microorganisms10010081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, droplet digital PCRTM (ddPCRTM) was used to characterize total Legionella spp. and five specific Legionella species from source (groundwater) to exposure sites (taps and cooling towers). A total of 42–10 L volume water samples were analyzed during this study: 12 from a reservoir (untreated groundwater and treated water storage tanks), 24 from two buildings (influents and taps), and six from cooling towers, all part of the same water system. The approximate water age (time in the system) for all sample locations are as follows: ~4.5, 3.4, 9.2, 20.8, and 23.2 h (h) for the groundwater to the reservoir influent, reservoir influent to the reservoir effluent, reservoir effluent to building Fa (building names are abbreviated to protect the privacy of site location), building ERC and the cooling towers, respectively. Results demonstrated that gene copies of Legionella spp. (23S rRNA) were significantly higher in the cooling towers and ERC building (p < 0.05) relative to the reservoir and building Fa (closest to reservoir). Legionella spp. (23S rRNA) were found in 100% (42/42) of water samples at concentrations ranging from 2.2 to 4.5 Log10 GC/100 mL. More specifically, L. pneumophila was found in 57% (24/42) of the water samples, followed by L. bozemanii 52% (22/42), L. longbeachae 36% (15/42), L. micdadei 23% (10/42) and L. anisa 21% (9/42) with geometric mean concentrations of 1.7, 1.7, 1.4, 1.6 and 1.7 Log10 GC/100 mL, respectively. Based on this study, it is hypothesized that water age in the distribution system and the premise-plumbing system as well as building management plays a major role in the increase of Legionella spp., (23S rRNA) and the diversity of pathogenic species found as seen in the influent, and at the taps in the ERC building—where the building water quality was most comparable to the industrial cooling towers. Other pathogenic Legionella species besides L.pneumophila are also likely amplifying in the system; thus, it is important to consider other disease relevant species in the whole water supply system—to subsequently control the growth of pathogenic Legionella in the built water environment.
Collapse
|
5
|
Zhang C, Struewing I, Mistry JH, Wahman DG, Pressman J, Lu J. Legionella and other opportunistic pathogens in full-scale chloraminated municipal drinking water distribution systems. WATER RESEARCH 2021; 205:117571. [PMID: 34628111 PMCID: PMC8629321 DOI: 10.1016/j.watres.2021.117571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 05/06/2023]
Abstract
Water-based opportunistic pathogens (OPs) are a leading cause of drinking-water-related disease outbreaks, especially in developed countries such as the United States (US). Physicochemical water quality parameters, especially disinfectant residuals, control the (re)growth, presence, colonization, and concentrations of OPs in drinking water distribution systems (DWDSs), while the relationship between OPs and those parameters remain unclear. This study aimed to quantify how physicochemical parameters, mainly monochloramine residual concentration, hydraulic residence time (HRT), and seasonality, affected the occurrence and concentrations of four common OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in four full-scale DWDSs in the US. Legionella as a dominant OP occurred in 93.8% of the 64 sampling events and had a mean density of 4.27 × 105 genome copies per liter. Legionella positively correlated with Mycobacterium, Pseudomonas, and total bacteria. Multiple regression with data from the four DWDSs showed that Legionella had significant correlations with total chlorine residual level, free ammonia concentration, and trihalomethane concentration. Therefore, Legionella is a promising indicator of water-based OPs, reflecting microbial water quality in chloraminated DWDSs. The OP concentrations had strong seasonal variations and peaked in winter and/or spring possibly because of reduced water usage (i.e., increased water stagnation or HRT) during cold seasons. The OP concentrations generally increased with HRT presumably because of disinfectant residual decay, indicating the importance of well-maintaining disinfectant residuals in DWDSs for OP control. The concentrations of Mycobacterium, Pseudomonas, and V. vermiformis were significantly associated with total chlorine residual concentration, free ammonia concentration, and pH and trihalomethane concentration, respectively. Overall, this study demonstrates how the significant spatiotemporal variations of OP concentrations in chloraminated DWDSs correlated with critical physicochemical water quality parameters such as disinfectant residual levels. This work also indicates that Legionella is a promising indicator of OPs and microbial water quality in chloraminated DWDSs.
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, Ohio, USA
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Dallas, Texas, USA
| | - David G Wahman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jonathan Pressman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA.
| |
Collapse
|
6
|
Ghorbani A, Hashemzadeh M, Amin M, Moosavian M, Nashibi R, Mehraban Z. Occurrence of the Legionella species in the respiratory samples of patients with pneumonia symptoms from Ahvaz, Iran; first detection of Legionella cherrii. Mol Biol Rep 2021; 48:7141-7146. [PMID: 34618288 DOI: 10.1007/s11033-021-06704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND This study aimed to investigate the occurrence of Legionella species in the respiratory samples of patients with pneumonia symptoms from Ahvaz, Iran by culture and the real-time PCR of 23S-5S rRNA gene spacer region. METHODS AND RESULTS A total of 123 clinical respiratory samples including 63 pleural aspirates, 57 bronchoalveolar lavage (BAL), and 3 sputum were collected from 65 males and 58 females with pneumonia symptoms. All samples were cultured on the Modified Wadowsky-Yee (MWY) agar. The Legionella species was identified by routine bacteriological tests. The presence of the 16S-23S rRNA spacer region gene was investigated by real-time PCR. The Legionella species were differentiated by sequencing of 16S-23S rRNA gene. A total of 2 (1.6%) BAL specimens were positive for Legionella species by culture method. No Legionella spp. were identified in pleural aspirates and sputum samples by the culture method. Using real-time PCR, 9 (7.3%) samples including 6 BAL, 1 sputum, and 2 pleural aspirates were positive for legionella species. These species were detected in 3 (5.2%) females and 6 males (9.2%). The results of sequencing showed that eight species were L. pneumophila while one was L. cherrii. Also, the 2 isolates that were identified by culture method, were confirmed as L. pneumophila by sequencing. CONCLUSIONS The results showed that using the real-time PCR has a more efficacy for detecting of Legionella species in respiratory samples. Also, L. pneumophila was the most prevalent species circulating in the southwest region of Iran. So, periodic monitoring programs is recommended to prevent epidemics due to this bacterium.
Collapse
Affiliation(s)
- Atosa Ghorbani
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Hashemzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansour Amin
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mojtaba Moosavian
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious Diseases and Tropical Medicine Ward, Razi Teaching Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mehraban
- Department of Pulmonology, Golestan Teaching Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Toplitsch D, Platzer S, Zehner R, Maitz S, Mascher F, Kittinger C. Comparison of Updated Methods for Legionella Detection in Environmental Water Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105436. [PMID: 34069615 PMCID: PMC8161308 DOI: 10.3390/ijerph18105436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/04/2022]
Abstract
The difficulty of cultivation of Legionella spp. from water samples remains a strenuous task even for experienced laboratories. The long incubation periods for Legionellae make isolation difficult. In addition, the water samples themselves are often contaminated with accompanying microbial flora, and therefore require complex cultivation methods from diagnostic laboratories. In addition to the recent update of the standard culture method ISO 11731:2017, new strategies such as quantitative PCR (qPCR) are often discussed as alternatives or additions to conventional Legionella culture approaches. In this study, we compared ISO 11731:2017 with qPCR assays targeting Legionella spp., Legionella pneumophila, and Legionella pneumophila serogroup 1. In samples with a high burden of accompanying microbial flora, qPCR shows an excellent negative predictive value for Legionella pneumophila, thus making qPCR an excellent tool for pre-selection of negative samples prior to work-intensive culture methods. This and its low limit of detection make qPCR a diagnostic asset in Legionellosis outbreak investigations, where quick-risk assessments are essential, and are a useful method for monitoring risk sites.
Collapse
|