1
|
García-Vilana S, Sánchez-Molina D, Llumà J. Effect of strain rate on the mechanical properties of human ribs: Insights from complete rib bending tests. J Mech Behav Biomed Mater 2025; 166:106954. [PMID: 40009973 DOI: 10.1016/j.jmbbm.2025.106954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
This study reassesses the mechanical properties of cortical bone by conducting complete rib bending tests to evaluate the effect of strain rate (0.0005<ɛ̇<0.50) on key mechanical parameters. The research involved n=12 specimens, divided into balanced groups based on age and strain rate. Unlike the traditional approach, which relies on tensile testing of machined cortical bone fragments, this methodology uses intact ribs subjected to bending, eliminating the need for extensive preparation through machining, and determine the mechanical properties in this test in an accurate computational manner. Complete rib bending tests pose unique challenges compared to uniaxial tensile tests. The ribs' curved shape and variable cross-sections necessitate the application of finite strain theory to accurately measure deformation, accounting for large displacements. This study aims to (1) validate the feasibility of deriving precise mechanical properties directly from intact bones, and (2) confirm that these results align with those from tensile testing, which, although simpler to execute, require greater preparation efforts. The findings from the rib bending tests confirm the following: (1) the Young's modulus of cortical bone decreases with age but remains largely unaffected by strain rate within the range examined; and (2) both maximum strain and maximum stress decline with age but increase with higher strain rates. While these trends were previously observed in tensile tests, this study provides new evidence using the more complex methodology of complete rib bending, and describes the progressive loss of stiffness with damage models.
Collapse
Affiliation(s)
- S García-Vilana
- UPC-EPSEVG, GiES-GRABI, Av. Víctor Balaguer 1, 08800 Barcelona, Spain.
| | - D Sánchez-Molina
- UPC-EEBE, GiES-GRABI, Av. Eduard Maristany 14, 08019 Barcelona, Spain
| | - J Llumà
- UPC-EEBE, DEFAM, Av. Eduard Maristany 14, 08019 Barcelona, Spain
| |
Collapse
|
2
|
Hostetler ZS, DiSerafino D, Kalmar-Gonzalo A, Jones D, Frazer L, Nicolella D, Davis M. The I-PREDICT 50th Percentile Male Finite Element Model: Development and Validation of the Torso. Ann Biomed Eng 2025:10.1007/s10439-025-03704-3. [PMID: 40100612 DOI: 10.1007/s10439-025-03704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Behind Armor Blunt Trauma (BABT) is a phenomenon that occurs when energy is transferred from Personal Protective Equipment (PPE) to the human body and can range from minor to fatal injuries. The current standard to evaluate PPE uses Roma Plastilina No. 1 clay and has a poor correlation to human injuries. To provide a more suitable human surrogate for evaluating risk of injury and functional incapacitation due to BABT, the Incapacitation Prediction for Readiness in Expeditionary Domains: an Integrated Computational Tool (I-PREDICT) has developed a 50th percentile male human body model (HBM) to better understand injury mechanisms in the BABT environment. The model was developed using a hierarchical validation approach including component, regional, and whole torso level tests. Material properties were sourced from literature and I-PREDICT experimental test data, and the model was simulated in 25 different validation cases ranging from component level quasi-static tests to high-rate BABT impacts. The model was stable in all 25 simulations. CORrelation and Analysis (CORA) and BioRank were used to objectively quantify the model response. The average CORA and BioRank across all validation cases were 0.78 ± 0.18 and 0.68 ± 0.27, respectively, indicating 'good' agreement by CORA standards and 'excellent' by BioRank standards. When compared to high-rate BABT experimental impacts on post-mortem human subjects, the I-PREDICT HBM accurately predicted rib fracture probability. The ultimate goal of the I-PREDICT model is to predict injury and functional incapacitation for various in theater military applications. This study highlights the development and validation of the I-PREDICT torso and highlights initial BABT use cases.
Collapse
|
3
|
Kang YS, Baker GH, DeWitt T, Marcallini A, Pradhan V, Tesny A, Bendig A, Haverfield Z, Agnew AM, Bolte JH. Thoracic Responses and Injuries of Male Post-Mortem Human Subjects in a Homogeneous Rear-Facing Seat During High-Speed Frontal Impact. Ann Biomed Eng 2025; 53:520-535. [PMID: 39540972 DOI: 10.1007/s10439-024-03646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
In recent post-mortem human subjects (PMHS) studies in a high-speed rear-facing frontal impact (HSRFFI), the PMHS sustained multiple rib fractures. The seatback structure and properties of the seats might contribute to these fractures. This study aimed to determine if a homogeneous rear-facing seat with foam-covered seatback would mitigate the risk of thoracic injury during an HSRFFI. Three male PMHS were subjected to the same previous HSRFFI pulse. The seating structure consisted of a homogeneous seatback composed of rigid plates with load cells and covered with both comfort and safety foam. The PMHS spine was instrumented with accelerometers and angular rate sensors. Two chestbands were attached at the level of the axilla and xiphoid, and strain gages and strain rosettes were attached to ribs. Whole-body kinematics were quantified using a motion capture system. PMHS1 and PMHS3 sustained 30 and 13 rib fractures, respectively, while PMHS2 did not sustain any fractures. Average maximum anterior-posterior (A-P) chest compressions ranged from 15.9 to 22.6%. Rib fractures occurred before and after the maximum A-P compression, so A-P chest compression alone did not correlate well with rib fracture outcomes. Thoracic inferior-superior (I-S) deformation relative to the T12 was 107.4 mm for PMHS1, 27.6 mm for PMHS2, and 85.1 mm for PMHS3. The direction of the maximum principal strain indicated that ribs experienced shear caused by I-S chest deformation. These results will assist with the development of countermeasures to protect occupants in a rear-facing seating configuration, along with validation of human body models.
Collapse
Affiliation(s)
- Yun-Seok Kang
- Injury Biomechanics Research Center, The Ohio State University, 333 West 10th Ave, RM2063, Columbus, Ohio, 43210, USA.
| | - Gretchen H Baker
- Injury Biomechanics Research Center, The Ohio State University, 333 West 10th Ave, RM2063, Columbus, Ohio, 43210, USA
| | - Timothy DeWitt
- Injury Biomechanics Research Center, The Ohio State University, 333 West 10th Ave, RM2063, Columbus, Ohio, 43210, USA
| | - Angelo Marcallini
- Injury Biomechanics Research Center, The Ohio State University, 333 West 10th Ave, RM2063, Columbus, Ohio, 43210, USA
| | - Vikram Pradhan
- Injury Biomechanics Research Center, The Ohio State University, 333 West 10th Ave, RM2063, Columbus, Ohio, 43210, USA
| | - Angela Tesny
- Injury Biomechanics Research Center, The Ohio State University, 333 West 10th Ave, RM2063, Columbus, Ohio, 43210, USA
| | - Alex Bendig
- Injury Biomechanics Research Center, The Ohio State University, 333 West 10th Ave, RM2063, Columbus, Ohio, 43210, USA
| | - Zachary Haverfield
- Injury Biomechanics Research Center, The Ohio State University, 333 West 10th Ave, RM2063, Columbus, Ohio, 43210, USA
| | - Amanda M Agnew
- Injury Biomechanics Research Center, The Ohio State University, 333 West 10th Ave, RM2063, Columbus, Ohio, 43210, USA
| | - John H Bolte
- Injury Biomechanics Research Center, The Ohio State University, 333 West 10th Ave, RM2063, Columbus, Ohio, 43210, USA
| |
Collapse
|
4
|
Corrales MA, Holcombe S, Agnew AM, Kang YS, Cronin DS. Isolated Rib Response and Fracture Prediction for Young Mid-Size Male, Enabled by Population Specific Material Models and Rib Cross-Sectional Geometry. STAPP CAR CRASH JOURNAL 2024; 68:89-103. [PMID: 39541594 DOI: 10.4271/2024-22-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Thorax injury remains a primary contributor to mortality in car crash scenarios. Although human body models can be used to investigate thorax response to impact, isolated rib models have not been able to predict age- and sex-specific force-displacement response and fracture location simultaneously, which is a critical step towards developing human thorax models able to accurately predict injury response. Recent advancements in constitutive models and quantification of age- and sex-specific material properties, cross-sectional area, and cortical bone thickness distribution offer opportunities to improve rib computational models. In the present study, improved cortical and trabecular bone constitutive models populated with age-specific material properties, age- and sex-specific population data on rib cross-sectional area, and cortical bone thickness distribution were implemented into an isolated 6th rib from a contemporary human body model. The enhanced rib model was simulated in anterior-posterior loading for comparison to experimental age- and sex-specific (twenty-three mid-size males, age range of 22- to 57-year-old) population force-displacement response and fracture location. The improved constitutive models, populated with age-specific material properties, proved critical to predict the rib failure force and displacement, while the improved cortical bone thickness distribution and cross-sectional area improved the fracture location prediction. The enhanced young mid-size male 6th rib model was able to predict young mid-size male 6th rib experimental force-displacement response and fracture location (overpredicted the displacement at failure by 35% and underpredicted the force at failure by 8% but within ±1 SD). The results of the present study can be integrated into full body models to potentially improve thorax injury prediction capabilities.
Collapse
Affiliation(s)
- Miguel A Corrales
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Canada
| | - Sven Holcombe
- International Center for Automotive Medicine, University of Michigan, Michigan, USA
| | - Amanda M Agnew
- Injury Biomechanics Research Center, Ohio State University, Ohio, USA
| | - Yun-Seok Kang
- Injury Biomechanics Research Center, Ohio State University, Ohio, USA
| | - Duane S Cronin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Canada
| |
Collapse
|
5
|
Schaffer R, Kang YS, Marcallini A, Pipkorn B, Bolte JH, Agnew AM. Comparison of Bending Properties in Paired Human Ribs with and without Costal Cartilage. STAPP CAR CRASH JOURNAL 2024; 68:104-154. [PMID: 39704625 DOI: 10.4271/2024-22-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Thoracic injuries, most frequently rib fractures, commonly occur in motor vehicle crashes. With an increased reliance on human body models (HBMs) for injury prediction in various crash scenarios, all thoracic tissues and structures require more comprehensive evaluation for improvement of HBMs. The objective of this study was to quantify the contribution of costal cartilage to whole rib bending properties in physical experiments. Fifteen bilateral pairs of 5th human ribs were included in this study. One rib within each pair was tested without costal cartilage while the other rib was tested with costal cartilage. All ribs were subjected to simplified A-P loading at 2 m/s until failure to simulate a frontal thoracic impact. Results indicated a statistically significant difference in force, structural stiffness, and yield strain between ribs with and without costal cartilage. On average, ribs with costal cartilage experienced a lower force but greater displacement with a longer time to fracture compared to isolated ribs. Comparisons were complicated by varying levels of calcification between costal cartilages and varying geometry with the inclusion of the costal cartilage. This study highlights the important effects of costal cartilage on rib properties and suggests an increased focus on costal cartilage in HBMs in future work.
Collapse
Affiliation(s)
- Rose Schaffer
- Injury Biomechanics Research Center, The Ohio State University
| | - Yun-Seok Kang
- Injury Biomechanics Research Center, The Ohio State University
| | | | | | - John H Bolte
- Injury Biomechanics Research Center, The Ohio State University
| | - Amanda M Agnew
- Injury Biomechanics Research Center, The Ohio State University
| |
Collapse
|
6
|
Robinson A, Zheng B, von Kleeck BW, Tan J, Gayzik FS. Holistic shape variation of the rib cage in an adult population. Front Bioeng Biotechnol 2024; 12:1432911. [PMID: 39359263 PMCID: PMC11445027 DOI: 10.3389/fbioe.2024.1432911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Traumatic injuries to the thorax are a common occurrence, and given the disparity in outcomes, injury risk is non-uniformly distributed within the population. Rib cage geometry, in conjunction with well-established biomechanical characteristics, is thought to influence injury tolerance, but quantifiable descriptions of adult rib cage shape as a whole are lacking. Here, we develop an automated pipeline to extract whole rib cage measurements from a large population and produce distributions of these measurements to assess variability in rib cage shape. Ten measurements of whole rib cage shape were collected from 1,719 individuals aged 25-45 years old including angular, linear, areal, and volumetric measures. The resulting pipeline produced measurements with a mean percent difference to manually collected measurements of 1.7% ± 1.6%, and the whole process takes 30 s per scan. Each measurement followed a normal distribution with a maximum absolute skew value of 0.43 and a maximum absolute excess kurtosis value of 0.6. Significant differences were found between the sexes (p < 0.001) in all except angular measures. Multivariate regression revealed that demographic predictors explain 29%-68% of the variance in the data. The angular measurements had the three lowest R2 values and were also the only three to have little correlation with subject stature. Unlike other measures, rib cage height had a negative correlation with BMI. Stature was the dominant demographic factor in predicting rib cage height, coronal area, sagittal area, and volume. Subject weight was the dominant demographic factor for rib cage width, depth, axial area, and angular measurements. Age was minimally important in this cohort of adults from a narrow age range. Individuals of similar height and weight had average rib cage measurements near the regression predictions, but the range of values across all subjects encompassed a large portion of their respective distributions. Our findings characterize the variability in adult rib cage geometry, including the variation within narrow demographic criteria. In future work, these can be integrated into computer aided engineering workflows to assess the influence of whole rib cage shape on the biomechanics of the adult human thorax.
Collapse
Affiliation(s)
- Andrea Robinson
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Virginia Tech-Wake Forest Center for Injury Biomechanics, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Bowen Zheng
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - B Wade von Kleeck
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Virginia Tech-Wake Forest Center for Injury Biomechanics, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Josh Tan
- Department of Radiology - Imaging Informatics, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - F Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Virginia Tech-Wake Forest Center for Injury Biomechanics, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
7
|
Kote VB, Frazer LL, Shukla A, Bailly A, Hicks S, Jones DA, DiSerafino DD, Davis ML, Nicolella DP. Probabilistic Finite Element Analysis of Human Rib Biomechanics: A Framework for Improved Generalizability. Ann Biomed Eng 2024:10.1007/s10439-024-03571-4. [PMID: 38955891 DOI: 10.1007/s10439-024-03571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
In dynamic impact events, thoracic injuries often involve rib fractures, which are closely related to injury severity. Previous studies have investigated the behavior of isolated ribs under impact loading conditions, but often neglected the variability in anatomical shape and tissue material properties. In this study, we used probabilistic finite element analysis and statistical shape modeling to investigate the effect of population-wide variability in rib cortical bone tissue mechanical properties and rib shape on the biomechanical response of the rib to impact loading. Using the probabilistic finite element analysis results, a response surface model was generated to rapidly investigate the biomechanical response of an isolated rib under dynamic anterior-posterior load given the variability in rib morphometry and tissue material properties. The response surface was used to generate pre-fracture force-displacement computational corridors for the overall population and a population sub-group of older mid-sized males. When compared to the experimental data, the computational mean response had a RMSE of 4.28N (peak force 94N) and 6.11N (peak force 116N) for the overall population and sub-group respectively, whereas the normalized area metric when comparing the experimental and computational corridors ranged from 3.32% to 22.65% for the population and 10.90% to 32.81% for the sub-group. Furthermore, probabilistic sensitivities were computed in which the contribution of uncertainty and variability of the parameters of interest was quantified. The study found that rib cortical bone elastic modulus, rib morphometry and cortical thickness are the random variables that produce the largest variability in the predicted force-displacement response. The proposed framework offers a novel approach for accounting biological variability in a representative population and has the potential to improve the generalizability of findings in biomechanical studies.
Collapse
Affiliation(s)
- Vivek Bhaskar Kote
- Materials Engineering, Southwest Research Institute, San Antonio, TX, USA.
| | - Lance L Frazer
- Materials Engineering, Southwest Research Institute, San Antonio, TX, USA
| | - Avani Shukla
- Mechanical and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley Bailly
- Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sydney Hicks
- College of Natural Science and Mathematics, University of Houston, Houston, TX, USA
| | | | | | | | - Daniel P Nicolella
- Materials Engineering, Southwest Research Institute, San Antonio, TX, USA
| |
Collapse
|
8
|
Holcombe S, Huang Y. Cross-sectional properties of rib geometry from an adult population. Front Bioeng Biotechnol 2023; 11:1158242. [PMID: 37284235 PMCID: PMC10239965 DOI: 10.3389/fbioe.2023.1158242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: Human body models (HBMs) play a key role in improving modern vehicle safety systems to protect broad populations. However, their geometry is commonly derived from single individuals chosen to meet global anthropometric targets, thus their internal anatomy may not fully represent the HBM's target demographic. Past studies show sixth rib cross-sectional geometry differences between HBM ribs and population-derived ribs, and corrections to HBM ribs based on these data have improved HBM's abilities to predict rib fracture locations. Methods: We measure and report average and standard deviations (SDs) in rib cross-sectional geometric properties derived from live subject CT scans of 240 adults aged 18-90. Male and female results are given as functions of rib number and rib lengthwise position for ribs 2 through 11. Population means/SDs are reported for measures of rib total area, rib cortical bone area, and rib endosteal area, as well as inertial moment properties of these rib sections. These population corridors are compared between males and females, and against the baseline rib geometries defined in six current HBMs. Results: Total cross-sectional area results found average males ribs to be larger than those of females by between approximately 1-2 SDs depending on rib number and position, and larger in cortical bone cross-sectional area by between 0-1 SDs. Inertial moment ratios showed female ribs being between approximately 0-1 SDs more elongated than male ribs, dependent again on rib number and position. Rib cross-sectional areas from 5 of the 6 HBMs were found to be overly large along substantial portions of most ribs when compared to average population corridors. Similarly, rib aspect ratios in HBMs deviated from average population data by up to 3 SDs in regions towards sternal rib ends. Discussion: Overall, while most HBMs capture overall trends such as reductions in cross-section along shaft lengths, many also exhibit local variation that deviates from population trends. This study's results provide the first reference values for assessing the cross-sectional geometry of human ribs across a wide range of rib levels. Results also further provide clear guidelines to improve rib geometry definitions present in current HBMs in order to better represent their target demographic.
Collapse
|
9
|
Larsson KJ, Iraeus J, Holcombe S, Pipkorn B. Influences of human thorax variability on population rib fracture risk prediction using human body models. Front Bioeng Biotechnol 2023; 11:1154272. [PMID: 37034266 PMCID: PMC10078960 DOI: 10.3389/fbioe.2023.1154272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Rib fractures remain a common injury for vehicle occupants in crashes. The risk of a human sustaining rib fractures from thorax loading is highly variable, potentially due to a variability in individual factors such as material properties and geometry of the ribs and ribcage. Human body models (HBMs) with a detailed ribcage can be used as occupant substitutes to aid in the prediction of rib injury risk at the tissue level in crash analysis. To improve this capability, model parametrization can be used to represent human variability in simulation studies. The aim of this study was to identify the variations in the physical properties of the human thorax that have the most influence on rib fracture risk for the population of vehicle occupants. A total of 15 different geometrical and material factors, sourced from published literature, were varied in a parametrized SAFER HBM. Parametric sensitivity analyses were conducted for two crash configurations, frontal and near-side impacts. The results show that variability in rib cortical bone thickness, rib cortical bone material properties, and rib cross-sectional width had the greatest influence on the risk for an occupant to sustain two or more fractured ribs in both impacts. Therefore, it is recommended that these three parameters be included in rib fracture risk analysis with HBMs for the population of vehicle occupants.
Collapse
Affiliation(s)
- Karl-Johan Larsson
- Autoliv Research, Vårgårda, Sweden
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
- *Correspondence: Karl-Johan Larsson,
| | - Johan Iraeus
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sven Holcombe
- International Center for Automotive Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Bengt Pipkorn
- Autoliv Research, Vårgårda, Sweden
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
John J, Klug C, Kranjec M, Svenning E, Iraeus J. Hello, world! VIVA+: A human body model lineup to evaluate sex-differences in crash protection. Front Bioeng Biotechnol 2022; 10:918904. [PMID: 35928956 PMCID: PMC9343945 DOI: 10.3389/fbioe.2022.918904] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Finite element Human Body Models are increasingly becoming vital tools for injury assessment and are expected to play an important role in virtual vehicle safety testing. With the aim of realizing models to study sex-differences seen in the injury- and fatality-risks from epidemiology, we developed models that represent an average female and an average male. The models were developed with an objective to allow tissue-based skeletal injury assessment, and thus non-skeletal organs and joints were defined with simplified characterizations to enhance computational efficiency and robustness. The model lineup comprises female and male representations of (seated) vehicle occupants and (standing) vulnerable road users, enabling the safety assessment of broader segments of the road user population. In addition, a new workflow utilized in the model development is presented. In this workflow, one model (the seated female) served as the base model while all the other models were generated as closely-linked derivative models, differing only in terms of node coordinates and mass distribution. This approach opens new possibilities to develop and maintain further models as part of the model lineup, representing different types of road users to reflect the ongoing transitions in mobility patterns (like bicyclists and e-scooter users). In this paper, we evaluate the kinetic and kinematic responses of the occupant and standing models to blunt impacts, mainly on the torso, in different directions (front, lateral, and back). The front and lateral impacts to the thorax showed responses comparable to the experiments, while the back impact varied with the location of impact (T1 and T8). Abdomen bar impact showed a stiffer load-deflection response at higher intrusions beyond 40 mm, because of simplified representation of internal organs. The lateral shoulder impact responses were also slightly stiffer, presumably from the simplified shoulder joint definition. This paper is the first in a series describing the development and validation of the new Human Body Model lineup, VIVA+. With the inclusion of an average-sized female model as a standard model in the lineup, we seek to foster an equitable injury evaluation in future virtual safety assessments.
Collapse
Affiliation(s)
- Jobin John
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Corina Klug
- Vehicle Safety Institute, Graz University of Technology, Graz, Austria
| | - Matej Kranjec
- Chair of Modeling in Engineering Sciences and Medicine, Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | | | - Johan Iraeus
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
11
|
Holcombe SA, Agnew AM, Derstine B, Wang SC. Comparing FE human body model rib geometry to population data. Biomech Model Mechanobiol 2020; 19:2227-2239. [PMID: 32444978 DOI: 10.1007/s10237-020-01335-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/26/2020] [Indexed: 11/26/2022]
Abstract
Finite element human body models (HBMs) are used to assess injury risk in a variety of impact scenarios. The ribs are a key structural component within the chest, so their accuracy within HBMs is vitally important for modeling human biomechanics. We assessed the geometric correspondence between the ribs defined within five widely used HBMs and measures drawn from population-wide studies of rib geometry, focusing on (1) rib global shape, (2) rib cross-sectional size and shape, and (3) rib cortical bone thickness. A parametric global shape model fitted to all HBM ribs was compared to expected rib parameters calculated for each HBM's subject demographic using population reference data. The GHBMC M50 and THUMS M50 male HBMs showed 24% and 50% of their fitted rib shape parameters (6 parameters per each 12 ribs) falling outside 1SD from population expected values, respectively. For female models the GHBMC F05, THUMS F05, and VIVA F50 models had 21%, 26%, and 19% of their rib shape parameters falling outside 1SD, respectively. Cross-sectional areas and inertial moments obtained along the HBM ribs were compared to average ± 1SD corridors for male and female ribs drawn from reference population data. The GHBMC M50, THUMS M50, and VIVA F50 model ribs were all larger in overall cross-sectional area than their targeted average population values by 0.9SDs (average across the rib's full length), 1.7SDs, and 1.3SDs, respectfully. When considering cortical bone cross-sectional area, the THUMS and VIVA models-which each define a constant bone thickness value across the entire rib-overestimated bone content on average by 1.1SDs and 1.2SDs, respectively. HBMs have traditionally performed poorly when predicting rib fracture onset or fracture site, and in all HBMs in this study the rib regions with the most extreme cortical bone thickness and cross-sectional area discrepancies (compared to average reference data) corresponded to regions toward the sternal end of the ribs where rib fractures most frequently occur. Results from this study highlight geometrical components of current HBM ribs that differ from the rib geometry that would be expected from within those models' target demographics, and help researchers prioritize improvements to their biofidelity.
Collapse
Affiliation(s)
- Sven A Holcombe
- International Center for Automotive Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Amanda M Agnew
- International Center for Automotive Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brian Derstine
- International Center for Automotive Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stewart C Wang
- International Center for Automotive Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Kang YS, Bolte JH, Stammen J, Moorhouse K, Agnew AM. A Novel Approach to Scaling Age-, Sex-, and Body Size-Dependent Thoracic Responses using Structural Properties of Human Ribs. STAPP CAR CRASH JOURNAL 2019; 63:307-329. [PMID: 32311062 DOI: 10.4271/2019-22-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thoracic injuries are frequently observed in motor vehicle crashes, and rib fractures are the most common of those injuries. Thoracic response targets have previously been developed from data obtained from post-mortem human subject (PMHS) tests in frontal loading conditions, most commonly of mid-size males. Traditional scaling methods are employed to identify differences in thoracic response for various demographic groups, but it is often unknown if these applications are appropriate, especially considering the limited number of tested PMHS from which those scaling factors originate. Therefore, the objective of this study was to establish a new scaling approach for generating age-, sex-, and body size- dependent thoracic responses utilizing structural properties of human ribs from direct testing of various demographics. One-hundred forty-seven human ribs (140 adult; 7 pediatric) from 132 individuals (76 male; 52 female; 4 pediatric) ranging in age from 6 to 99 years were included in this study. Ribs were tested at 2 m/s to failure in a frontal impact scenario. Force and displacement for individual ribs were used to develop new scaling factors, with a traditional mid-size biomechanical target as a baseline response. This novel use of a large, varied dataset of dynamic whole rib responses offers vast possibilities to utilize existing biomechanical data in creative ways to reduce thoracic injuries in diverse vehicle occupants.
Collapse
Affiliation(s)
- Yun-Seok Kang
- Injury Biomechanics Research Center, The Ohio State University
| | - John H Bolte
- Injury Biomechanics Research Center, The Ohio State University
| | - Jason Stammen
- National Highway Traffic Safety Administration, Vehicle Research and Test Center
| | - Kevin Moorhouse
- National Highway Traffic Safety Administration, Vehicle Research and Test Center
| | - Amanda M Agnew
- Injury Biomechanics Research Center, The Ohio State University
| |
Collapse
|