1
|
Innella G, Rossi C, Romagnoli M, Repaci A, Bianchi D, Cantarini ME, Martorana D, Godino L, Pession A, Percesepe A, Pagotto U, Turchetti D. Results and Clinical Interpretation of Germline RET Analysis in a Series of Patients with Medullary Thyroid Carcinoma: The Challenge of the Variants of Uncertain Significance. Cancers (Basel) 2020; 12:cancers12113268. [PMID: 33167350 PMCID: PMC7694403 DOI: 10.3390/cancers12113268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Germline RET variants are responsible for approximately 25% of medullary thyroid carcinoma (MTC) cases. Identification of RET variant carriers allows for the adoption of preventative measures which are dependent on the risk associated with the specific alteration. From 2002 to 2020, at our cancer genetics clinic, RET genetic testing was performed in 163 subjects (102 complete gene analyses and 61 targeted analyses), 72 of whom presented with MTC. A germline RET variant was identified in 31.9% of patients affected by MTC (93.8% of those having positive family history and 14.3% of clinically sporadic cases). Subsequent target testing in relatives allowed us to identify 22 asymptomatic carriers, who could undertake appropriate screening. Overall, patients with germline RET variants differed significantly from those who tested negative by family history (p < 0.001) and mean age at MTC diagnosis (44.45 vs. 56.42 years; p = 0.010), but the difference was not significant when only carriers of moderate risk variants were considered (51.78 vs. 56.42 years; p = 0.281). Out of 12 different variants detected in 49 patients, five (41.7%) were of uncertain significance (VUS). For two of these, p.Ser904Phe and p.Asp631_Leu633delinsGlu, co-segregation and genotype/phenotype analysis, matched with data from the literature, provided evidence supporting their classification in the moderate and the highest/high risk class (with a MEN2B phenotype), respectively.
Collapse
Affiliation(s)
- Giovanni Innella
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.I.); (C.R.); (M.R.); (L.G.)
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (U.P.)
| | - Cesare Rossi
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.I.); (C.R.); (M.R.); (L.G.)
| | - Maria Romagnoli
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.I.); (C.R.); (M.R.); (L.G.)
| | - Andrea Repaci
- Endocrinology and Diabetes Prevention and Care Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Davide Bianchi
- Division of Endocrinology, Ospedale di Bentivoglio, 40010 Bentivoglio (BO), Italy;
| | - Maria Elena Cantarini
- Division of Pediatric Oncology, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Davide Martorana
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (D.M.); (A.P.)
| | - Lea Godino
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.I.); (C.R.); (M.R.); (L.G.)
| | - Andrea Pession
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (U.P.)
- Division of Pediatric Oncology, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Antonio Percesepe
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (D.M.); (A.P.)
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (U.P.)
- Endocrinology and Diabetes Prevention and Care Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Daniela Turchetti
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.I.); (C.R.); (M.R.); (L.G.)
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (U.P.)
- Correspondence: ; Tel.: +39-051-208-0904
| |
Collapse
|
2
|
Levy HC, Hulvey D, Adamson-Small L, Jn-Simon N, Prima V, Rivkees S, Hobbs JA. Improved cell-specificity of adeno-associated viral vectors for medullary thyroid carcinoma using calcitonin gene regulatory elements. PLoS One 2020; 15:e0228005. [PMID: 32027681 PMCID: PMC7004351 DOI: 10.1371/journal.pone.0228005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeted gene therapy using recombinant adeno-associated virus (rAAV) vectors is a potential therapeutic strategy for treating cancer, and tissue-specific promoters may help with tissue targeting. Medullary thyroid carcinoma (MTC) is a disease of the calcitonin secreting thyroid C cells, and calcitonin is highly expressed in MTC tumors compared to other cells. To target MTC cells, we evaluated an rAAV serotype 2 vector (rAAV2-pM+104-GFP) containing a modified calcitonin/calcitonin gene related peptide promoter (pM+104) and a green fluorescent protein (GFP) reporter gene. In vitro transduction experiments comparing the MTC TT cell line with non-MTC cell lines demonstrated that rAAV2-pM+104-GFP infection yielded significantly (p < 0.05) higher GFP expression in TT cells than in non-MTC cell lines (HEK293 and HeLa), and significantly higher expression than in TT cells infected with the positive control rAAV2-pCBA-GFP vector. The rAAV2-pCBA-GFP control vector included a well-characterized, ubiquitously expresses control promoter, the chicken beta actin promoter with a cytomegalovirus enhancer (pCBA). In vivo experiments using a TT cell xenograft tumor mouse model showed that tumors directly injected with 2 x 1010 vg of rAAV2-pM+104-GFP vector resulted in GFP expression detected in 21.7% of cells, 48 hours after the injection. Furthermore, GFP expression was significantly higher for rAAV-pM+104-GFP treatments with a longer vector treatment duration and higher vector dose, with up to 52.6% (q < 0.05) GFP cells detected 72 hours after injecting 1x 1011 vg/tumor. These data show that we have developed an rAAV vector with improved selectivity for MTC.
Collapse
Affiliation(s)
- Hazel C. Levy
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Danielle Hulvey
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Laura Adamson-Small
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Natacha Jn-Simon
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Victor Prima
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Scott Rivkees
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jacqueline A. Hobbs
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
3
|
Reza J, Almodovar AJ, Srivastava M, Veldhuis PP, Patel S, Fanaian N, Zhu X, Litherland SA, Arnoletti JP. K-RAS Mutant Gene Found in Pancreatic Juice Activated Chromatin From Peri-ampullary Adenocarcinomas. Epigenet Insights 2019; 12:2516865719828348. [PMID: 30815628 PMCID: PMC6383091 DOI: 10.1177/2516865719828348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
External pancreatic duct stents inserted after resection of pancreatic head
tumors provide unique access to pancreatic juice analysis of genetic and
metabolic components that may be associated with peri-ampullary tumor
progression. For this pilot study, portal venous blood and pancreatic juice
samples were collected from 17 patients who underwent pancreaticoduodenectomy
for peri-ampullary tumors. Portal vein circulating tumor cells (CTC) were
isolated by high-speed fluorescence-activated cell sorting (FACS) and analyzed
by quantitative reverse transcription polymerase chain reaction (RT-PCR) for
K-RAS exon 12 mutant gene expression
(K-RASmut). DNA, chromatin, and histone acetylated active
chromatin were isolated from pancreatic juice samples by chromatin
immunoprecipitation (ChIP) and the presence of K-RASmut and
other cancer-related gene sequences detected by quantitative polymerase chain
reaction (PCR) and ChIP-Seq. Mutated K-RAS gene was detectable
in activated chromatin in pancreatic juice secreted after surgical resection of
pancreatic, ampullary and bile duct carcinomas and directly correlated with the
number of CTC found in the portal venous blood (P = .0453).
ChIP and ChIP-Seq detected acetylated chromatin in peri-ampullary cancer patient
juice containing candidate chromatin loci, including RET
proto-oncogene, not found in similar analysis of pancreatic juice from
non-malignant ampullary adenoma. The presence of active tumor cell chromatin in
pancreatic juice after surgical removal of the primary tumor suggests that
viable cancer cells either remain or re-emerge from the remnant pancreatic duct,
providing a potential source for tumor recurrence and cancer relapse. Therefore,
epigenetic analysis for active chromatin in pancreatic juice and portal venous
blood CTC may be useful for prognostic risk stratification and potential
identification of molecular targets in peri-ampullary cancers.
Collapse
Affiliation(s)
- Joseph Reza
- General Surgery Residency Program, AdventHealth, Orlando, FL, USA
| | - Alvin Jo Almodovar
- Translational Research, Cancer Institute, AdventHealth, Orlando, FL, USA
| | - Milan Srivastava
- Translational Research, Cancer Institute, AdventHealth, Orlando, FL, USA
| | - Paula P Veldhuis
- Institute for Surgical Advancement, AdventHealth, Orlando, FL, USA
| | - Swati Patel
- Institute for Surgical Advancement, AdventHealth, Orlando, FL, USA
| | - Na'im Fanaian
- Center for Diagnostic Pathology, AdventHealth, Orlando, FL, USA
| | - Xiang Zhu
- Center for Interventional Endoscopy, AdventHealth, Orlando, FL, USA
| | - Sally A Litherland
- Translational Research, Cancer Institute, AdventHealth, Orlando, FL, USA
| | - J Pablo Arnoletti
- Translational Research, Cancer Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
4
|
Mohammadi M, Hedayati M. A Brief Review on The Molecular Basis of Medullary Thyroid Carcinoma. CELL JOURNAL 2016; 18:485-492. [PMID: 28042533 PMCID: PMC5086327 DOI: 10.22074/cellj.2016.4715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/25/2016] [Indexed: 01/03/2023]
Abstract
Approximately 5-10% of all thyroid cancers are medullary thyroid carcinomas (MTC). MTC
is mainly sporadic in nature, but 20-30% of cases are hereditary. Genetic testing for hereditary
MTC is very important for the patient and his family, but the patients must be receiving
appropriate genetic counseling. About 98% of patients with hereditary MTC have
germline mutations in exons 10, 11, 13, 14, 15, 16 and intron 16 of the REarrangement
during transfection (RET) proto-oncogene, but the etiology of the more frequent sporadic
form of MTC (sMTC) is not well understood. Recently, it has been reported that apparently
sporadic MTC may involve point mutations in BRAF and RAS genes, with an overall
prevalence of almost 10%. Also alteration and abnormal expression of miRNA has been
described in MTC. In this review, we attempted to mention some mutations and molecular
changes in sporadic and hereditary MTC pathogenesis.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Hedayati M, Zarif Yeganeh M, Sheikholeslami S, Afsari F. Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer. Crit Rev Clin Lab Sci 2016; 53:217-27. [PMID: 26678667 DOI: 10.3109/10408363.2015.1129529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy and accounts for nearly 1% of all of human cancer. Thyroid cancer has four main histological types: papillary, follicular, medullary, and anaplastic. Papillary, follicular, and anaplastic thyroid carcinomas are derived from follicular thyroid cells, whereas medullary thyroid carcinoma (MTC) originates from the neural crest parafollicular cells or C-cells of the thyroid gland. MTC represents a neuroendocrine tumor and differs considerably from differentiated thyroid carcinoma. MTC is one of the aggressive types of thyroid cancer, which represents 3-10% of all thyroid cancers. It occurs in hereditary (25%) and sporadic (75%) forms. The hereditary form of MTC has an autosomal dominant mode of inheritance. According to the present classification, hereditary MTC is classified as a multiple endocrine neoplasi type 2 A & B (MEN2A & MEN2B) and familial MTC (FMTC). The RET proto-oncogene is located on chromosome 10q11.21. It is composed of 21 exons and encodes a transmembrane receptor tyrosine kinase. RET regulates a complex network of signal transduction pathways during development, survival, proliferation, differentiation, and migration of the enteric nervous system progenitor cells. Gain of function mutations in RET have been well demonstrated in MTC development. Variants of MTC result from different RET mutations, and they have a good genotype-phenotype correlation. Various MTC related mutations have been reported in different exons of the RET gene. We proposed that RET genetic mutations may be different in distinct populations. Therefore, the aim of this study was to find a geographical pattern of RET mutations in different populations.
Collapse
Affiliation(s)
- Mehdi Hedayati
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Marjan Zarif Yeganeh
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sara Sheikholeslami
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Farinaz Afsari
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
6
|
Yeganeh MZ, Sheikholeslami S, Hedayati M. RET Proto Oncogene Mutation Detection and Medullary Thyroid Carcinoma Prevention. Asian Pac J Cancer Prev 2015; 16:2107-17. [DOI: 10.7314/apjcp.2015.16.6.2107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Li S, Bhave D, Chow JM, Riera TV, Schlee S, Rauch S, Atanasova M, Cate RL, Whitty A. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels. J Biol Chem 2015; 290:10018-36. [PMID: 25635057 DOI: 10.1074/jbc.m114.602268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 01/16/2023] Open
Abstract
A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pM) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pM ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5-10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25-50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome.
Collapse
Affiliation(s)
- Simin Li
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Devayani Bhave
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Jennifer M Chow
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Thomas V Riera
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Sandra Schlee
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Simone Rauch
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Mariya Atanasova
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Richard L Cate
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Adrian Whitty
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
8
|
Horizon scanning for translational genomic research beyond bench to bedside. Genet Med 2014; 16:535-8. [PMID: 24406461 PMCID: PMC4079725 DOI: 10.1038/gim.2013.184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/25/2013] [Indexed: 12/16/2022] Open
Abstract
The dizzying pace of genomic discoveries is leading to an increasing number of clinical applications. However, very little translational research is ongoing beyond Bench to Bedside to assess validity, utility, implementation and outcomes of such applications. Here we report cross sectional results of ongoing horizon scanning of translational genomic research conducted between May 16, 2012 and May 15, 2013. Based on a weekly, systematic query of PubMed, we created a curated set of 505 beyond bench-to-bedside research publications, including 312 original research articles, 123 systematic and other reviews, 38 clinical guidelines, policies and recommendations, and 32 papers describing tools, decision support and educational materials. Most papers (62%) addressed a specific genomic test or other health application; almost half of these (n=180) were related to cancer. We estimate that these publications account for 0.5% of reported human genomics and genetics research during the same time. These data provide baseline information to track the evolving knowledge base and gaps in genomic medicine. Continuous horizon scanning is crucial for an evidence-based translation of genomic discoveries into improved health care and disease prevention.
Collapse
|