1
|
Vargas-Arana G, Torres-Benítez A, Ortega-Valencia JE, Merino-Zegarra C, Carranza-Rosales P, Simirgiotis MJ. Untargeted Chemical Profile, Antioxidant, and Enzyme Inhibition Activity of Physalis angulata L. from the Peruvian Amazon: A Contribution to the Validation of Its Pharmacological Potential. Antioxidants (Basel) 2025; 14:246. [PMID: 40227212 PMCID: PMC11939355 DOI: 10.3390/antiox14030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Physalis angulata is a plant of great value in traditional medicine known for its content of bioactive compounds, such as physalins and withanolides, which possess diverse biological activities. In this study, the chemical profile, antioxidant activity, and enzyme inhibition capacity of aqueous and ethanolic extracts obtained from the root, stem, leaves, calyx, and fruits of P. angulata collected in Peru were evaluated. A total of forty-two compounds were detected in the extracts using UHPLC-ESI-QTOF-MS analysis. In vitro analyses revealed that leaf extracts contained the highest concentration of phenolic compounds, while leaf and fruit extracts showed the best results in FRAP, DPPH, and ABTS antioxidant tests; on the other hand, inhibition of AChE, BChE, α-glucosidase, and α-amylase enzymes was variable, but calyx and fruit extracts showed higher effectiveness. In silico analyses indicated that the compounds physagulin A, physagulin F, physagulide P, physalin B, and withaminimin showed stable interactions and favorable binding affinities with the catalytic sites of the enzymes studied. These results confirm the pharmacological potential of extracts and compounds derived from different organs of P. angulata, suggesting their promising use in treating diseases related to the central nervous system and metabolic syndrome.
Collapse
Affiliation(s)
- Gabriel Vargas-Arana
- Laboratorio de Química de Productos Naturales, Instituto de Investigaciones de la Amazonía Peruana, Avenue Abelardo Quiñones Km 2.5, Iquitos 16001, Peru;
- Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16001, Peru
| | - Alfredo Torres-Benítez
- Carrera de Química y Farmacia, Facultad de Ciencias, Universidad San Sebastián, General Lagos 1163, Valdivia 5090000, Chile;
| | - José Erick Ortega-Valencia
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Xalapa, Sección 5ª Reserva Territorial S/N, Col. Santa Bárbara 91096, Veracruz, Mexico;
| | - Claudia Merino-Zegarra
- Laboratorio de Química de Productos Naturales, Instituto de Investigaciones de la Amazonía Peruana, Avenue Abelardo Quiñones Km 2.5, Iquitos 16001, Peru;
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo León, Mexico;
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
| |
Collapse
|
2
|
Ain QT, Saleem N, Munawar N, Nawaz R, Naseer F, Ahmed S. Quest for malaria management using natural remedies. Front Pharmacol 2024; 15:1359890. [PMID: 39011507 PMCID: PMC11247327 DOI: 10.3389/fphar.2024.1359890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/29/2024] [Indexed: 07/17/2024] Open
Abstract
Malaria, transmitted through the bite of a Plasmodium-infected Anopheles mosquito, remains a significant global health concern. This review examines the complex life cycle of Plasmodium, emphasizing the role of humans and mosquitoes in its transmission and proliferation. Malarial parasites are transmitted as sporozoites to the human body by biting an infected female Anopheles mosquito. These sporozoites then invade liver cells, multiply, and release merozoites, which infect red blood cells, perpetuating the cycle. As this cycle continues, the affected person starts experiencing the clinical symptoms of the disease. The current treatments for malaria, including chloroquine, artemisinin-based combination therapy, and quinine, are discussed alongside the challenges of drug resistance and misdiagnosis. Although efforts have been made to develop a malarial vaccine, they have so far been unsuccessful. Additionally, the review explores the potential of medicinal plants as remedies for malaria, highlighting the efficacy of compounds derived from Artemisia annua, Cinchona species, and Helianthus annuus L., as well as exploration of plants and phytocompounds like cryptolepine, and isoliquiritigenin against drug-resistant Plasmodium species. Moreover, studies from Pakistan further highlight the diverse vegetal resources utilized in malaria treatment, emphasizing the need for further research into natural remedies. Despite the advantages of herbal medicines, including cost-effectiveness, and fewer side effects; their limitations must be taken into account, including variations in potency and potential drug interactions. The review concludes by advocating for a balanced approach to malaria treatment and prevention, emphasizing the importance of early detection, accurate diagnosis, and integrated efforts to combat the disease in the endemic regions.
Collapse
Affiliation(s)
- Qura Tul Ain
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Nida Saleem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rukhsana Nawaz
- Department of Clinical Psychology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| |
Collapse
|
3
|
Richard-Bollans A, Aitken C, Antonelli A, Bitencourt C, Goyder D, Lucas E, Ondo I, Pérez-Escobar OA, Pironon S, Richardson JE, Russell D, Silvestro D, Wright CW, Howes MJR. Machine learning enhances prediction of plants as potential sources of antimalarials. FRONTIERS IN PLANT SCIENCE 2023; 14:1173328. [PMID: 37304721 PMCID: PMC10248027 DOI: 10.3389/fpls.2023.1173328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023]
Abstract
Plants are a rich source of bioactive compounds and a number of plant-derived antiplasmodial compounds have been developed into pharmaceutical drugs for the prevention and treatment of malaria, a major public health challenge. However, identifying plants with antiplasmodial potential can be time-consuming and costly. One approach for selecting plants to investigate is based on ethnobotanical knowledge which, though having provided some major successes, is restricted to a relatively small group of plant species. Machine learning, incorporating ethnobotanical and plant trait data, provides a promising approach to improve the identification of antiplasmodial plants and accelerate the search for new plant-derived antiplasmodial compounds. In this paper we present a novel dataset on antiplasmodial activity for three flowering plant families - Apocynaceae, Loganiaceae and Rubiaceae (together comprising c. 21,100 species) - and demonstrate the ability of machine learning algorithms to predict the antiplasmodial potential of plant species. We evaluate the predictive capability of a variety of algorithms - Support Vector Machines, Logistic Regression, Gradient Boosted Trees and Bayesian Neural Networks - and compare these to two ethnobotanical selection approaches - based on usage as an antimalarial and general usage as a medicine. We evaluate the approaches using the given data and when the given samples are reweighted to correct for sampling biases. In both evaluation settings each of the machine learning models have a higher precision than the ethnobotanical approaches. In the bias-corrected scenario, the Support Vector classifier performs best - attaining a mean precision of 0.67 compared to the best performing ethnobotanical approach with a mean precision of 0.46. We also use the bias correction method and the Support Vector classifier to estimate the potential of plants to provide novel antiplasmodial compounds. We estimate that 7677 species in Apocynaceae, Loganiaceae and Rubiaceae warrant further investigation and that at least 1300 active antiplasmodial species are highly unlikely to be investigated by conventional approaches. While traditional and Indigenous knowledge remains vital to our understanding of people-plant relationships and an invaluable source of information, these results indicate a vast and relatively untapped source in the search for new plant-derived antiplasmodial compounds.
Collapse
Affiliation(s)
| | - Conal Aitken
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, United Kingdom
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - David Goyder
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Eve Lucas
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Ian Ondo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, United Kingdom
| | - James E. Richardson
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Tropical Diversity Section, Royal Botanic Garden, Edinburgh, United Kingdom
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - David Russell
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Daniele Silvestro
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Colin W. Wright
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom
| | - Melanie-Jayne R. Howes
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, London, United Kingdom
| |
Collapse
|
4
|
Indradi RB, Muhaimin M, Barliana MI, Khatib A. Potential Plant-Based New Antiplasmodial Agent Used in Papua Island, Indonesia. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091813. [PMID: 37176870 PMCID: PMC10181418 DOI: 10.3390/plants12091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Resistance to antimalarial medicine remains a threat to the global effort for malaria eradication. The World Health Organization recently reported that artemisinin partial resistance, which was defined as delayed parasite clearance, was detected in Southeast Asia, particularly in the Greater Mekong subregion, and in Africa, particularly in Rwanda and Uganda. Therefore, the discovery of a potential new drug is important to overcome emerging drug resistance. Natural products have played an important role in drug development over the centuries, including the development of antimalarial drugs, with most of it influenced by traditional use. Recent research on traditional medicine used as an antimalarial treatment on Papua Island, Indonesia, reported that 72 plant species have been used as traditional medicine, with Alstonia scholaris, Carica papaya, Andrographis paniculata, and Physalis minima as the most frequently used medicinal plants. This review aimed to highlight the current research status of these plants for potential novel antiplasmodial development. In conclusion, A. paniculata has the highest potential to be developed as an antiplasmodial, and its extract and known bioactive isolate andrographolide posed strong activity both in vitro and in vivo. A. scholaris and C. papaya also have the potential to be further investigated as both have good potential for their antiplasmodial activities in vivo. However, P. minima is a less studied medicinal plant; nevertheless, it opens the opportunity to explore the potential of this plant.
Collapse
Affiliation(s)
- Raden Bayu Indradi
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center of Herbal Study, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Muhaimin Muhaimin
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center of Herbal Study, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kuliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| |
Collapse
|