1
|
Lin JG, Sun YW, Wu WL, Jiang WP, Zhung FY, Huang GJ. Multi-Target Protective Effects of Sanghuangporus sanghuang Against 5-Fluorouracil-Induced Intestinal Injury Through Suppression of Inflammation, Oxidative Stress, Epitheli-Al-Mesenchymal Transition, and Tight Junction. Int J Mol Sci 2025; 26:3444. [PMID: 40244381 PMCID: PMC11989720 DOI: 10.3390/ijms26073444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Sanghuang (Sanghuangporus sanghuang, SS) is a medicinal fungus with multiple pharmacological effects, including antioxidant, anti-inflammatory, immune-boosting, and anti-cancer activities. 5-fluorouracil (5-FU) is a commonly used chemotherapeutic agent for the treatment of colorectal cancer. It primarily exerts its antitumor effect by inhibiting DNA and RNA synthesis, leading to cell apoptosis. However, it frequently induces adverse effects These issues limit the clinical application of 5-FU. This research aims to determine the potential of SS as a therapeutic agent in reducing 5-FU-induced intestinal mucositis in a mouse model. The results indicated that 5-FU administration significantly increased diarrhea severity, reduced colon length, caused small intestinal villus atrophy, disrupted intestinal architecture, led to insufficient crypt cell proliferation, and resulted in weight loss. It also significantly upregulated inflammatory responses, apoptosis, oxidative stress, and epithelial-mesenchymal transition (EMT) pathways, and disrupted the integrity of intestinal mucosal tight junction, while elevating pro-inflammatory cytokines and reducing antioxidant capacity. However, SS significantly ameliorating alleviating the adverse impacts of the chemotherapeutic agent on the intestinal mucosa. In conclusion, this investigation provides the first evidence of the protective effects of SS on 5-FU-induced mucositis. These findings suggest SS as a potential therapeutic application, offering a promising strategy for reducing the adverse effects of 5-FU chemotherapy and improving the treatment and quality of life for colorectal cancer patients.
Collapse
Affiliation(s)
- Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (J.-G.L.); (W.-L.W.)
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Yu-Wen Sun
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Liang Wu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (J.-G.L.); (W.-L.W.)
| | - Wen-Ping Jiang
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Fang-Yu Zhung
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
2
|
Niu C, Zhang J, Okolo PI, Daglilar E. Plant polyphenols in gastric cancer: Nature's healing touch. Semin Oncol 2025; 52:152333. [PMID: 40073717 DOI: 10.1053/j.seminoncol.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/14/2025]
Abstract
Globally, gastric cancer ranks as the fifth most common cancer and is the third most common cause of malignancy-associated mortality. Although surgery is the primary treatment option for gastric cancer, adjuvant chemotherapy improves survival in patients following surgery. Proverbially, plant polyphenols have many beneficial health effects, including anticancer properties. Extensive studies have shown that plant polyphenols exhibit potential anticancer effects against gastric cancer in vitro and in vivo, as well as very few human studies. However, this topic has not yet been reviewed. The present review shows that the potential anticancer effect of plant polyphenols on gastric cancer was preliminarily attributed to their antiproliferative, antimetastatic, and antiangiogenic effects and modulations of apoptosis, autophagy, and intracellular reactive oxygen species. Moreover, conventional therapeutics combined with plant polyphenols make gastric cancer cells more sensitive to conventional therapy. We also discuss challenges and opportunities in translating plant polyphenol-based therapy to clinical applications. The content provided in this review is of interest to pharmacologists, ethnobotanists, and oncologists who are involved in phytomedicine.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, Rochester, NY, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, Vancouver, WA, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Carillion Clinic, Roanoke, VA, USA
| | - Ebubekir Daglilar
- Division of Gastroenterology, Charleston Area Medical Center/CAMC Institute for Academic Medicine Program, Charleston, WV, USA
| |
Collapse
|
3
|
Du J, Wang H, Zhong L, Wei S, Min X, Deng H, Zhang X, Zhong M, Huang Y. Bioactivity and biomedical applications of pomegranate peel extract: a comprehensive review. Front Pharmacol 2025; 16:1569141. [PMID: 40206073 PMCID: PMC11979244 DOI: 10.3389/fphar.2025.1569141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Pomegranate peel is a by-product generated during the processing of pomegranate (Punica granatum L.) fruit, accounting for approximately 50% of the total mass of the fruit. Although pomegranate peel is usually regarded as waste, it is rich in various bioactive metabolites such as polyphenols, tannins, and flavonoids, demonstrating significant medicinal and nutritional value. In recent years, Pomegranate peel extract (PPE) has shown broad application prospects in the biomedical field due to its multiple effects, including antioxidant, anti-inflammatory, antibacterial, anti-apoptotic properties, and promotion of cell regeneration. This review consolidates the major bioactive metabolites of PPE and explores its applications in biomedical materials, including nanodrug carriers, hydrogels, and tissue engineering scaffolds. By synthesizing the existing literature, we delve into the potential value of PPE in biomedicine, the challenges currently encountered, and the future directions for research. The aim of this review is to provide a scientific basis for optimizing the utilization of PPE and to facilitate its broader application in the biomedical field.
Collapse
Affiliation(s)
- Jinsong Du
- School of Health Management, Zaozhuang University, Zaozhuang, China
- Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China
| | - Heming Wang
- School of Nursing, Jilin University, Jilin, China
| | - Lingyun Zhong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Shujie Wei
- Image Center, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Xiaoqiang Min
- Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China
- Department of Geriatics, Shandong Healthcare Group Xinwen Central Hospital, Taian, China
| | - Hongyan Deng
- School of Health Management, Zaozhuang University, Zaozhuang, China
| | - Xiaoyan Zhang
- Magnetic Resonance Imaging Department, Shandong Healthcare Group Zaozhuang Central Hospital, Zaozhuang, China
| | - Ming Zhong
- Lanshu Cosmetics Co., Ltd., Huzhou, Zhejiang, China
| | - Yi Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Xu D, Yuan L, Meng F, Lu D, Che M, Yang Y, Liu W, Nan Y. Research progress on antitumor effects of sea buckthorn, a traditional Chinese medicine homologous to food and medicine. Front Nutr 2024; 11:1430768. [PMID: 39045282 PMCID: PMC11263281 DOI: 10.3389/fnut.2024.1430768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Sea buckthorn (Hippophae Fructus), as a homologous species of medicine and food, is widely used by Mongolians and Tibetans for its anti-tumor, antioxidant and liver-protecting properties. In this review, the excellent anti-tumor effect of sea buckthorn was first found through network pharmacology, and its active components such as isorhamnetin, quercetin, gallic acid and protocatechuic acid were found to have significant anti-tumor effects. The research progress and application prospect of sea buckthorn and its active components in anti-tumor types, mechanism of action, liver protection, anti-radiation and toxicology were reviewed, providing theoretical basis for the development of sea buckthorn products in the field of anti-tumor research and clinical application.
Collapse
Affiliation(s)
- Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Mengying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Wang L, Liu J, Wang X, Li X, Zhang X, Yuan L, Wu Y, Liu M. Effect of the combined binding of topotecan and catechin/protocatechuic acid to a pH-sensitive DNA tetrahedron on release and cytotoxicity: Spectroscopic and calorimetric studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124179. [PMID: 38522375 DOI: 10.1016/j.saa.2024.124179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
The therapeutic efficacy of chemotherapy drugs can be effectively improved through the dual effects of their combination with natural polyphenols and the delivery of targeted DNA nanostructures. In this work, the interactions of topotecan (TPT), (+)-catechin (CAT), or protocatechuic acid (PCA) with a pH-sensitive DNA tetrahedron (MUC1-TD) in the binary and ternary systems at pHs 5.0 and 7.4 were investigated by fluorescence spectroscopy and calorimetry. The intercalative binding mode of TPT/CAT/PC to MUC1-TD was confirmed, and their affinity was ranked in the order of PCA > CAT > TPT. The effects of the pH-sensitivity of MUC1-TD and different molecular structures of CAT and PCA on the loading, release, and cytotoxicity of TPT were discussed. The weakened interaction under acidic conditions and the co-loading of CAT/PCA, especially PCA, improved the release of TPT loaded by MUC1-TD. The targeting of MUC1-TD and the synergistic effect with CAT/PCA, especially CAT, enhanced the cytotoxicity of TPT on A549 cells. For L02 cells, the protective effect of CAT/PCA reduced the damage caused by TPT. The single or combined TPT loaded by MUC1-TD was mainly concentrated in the nucleus of A549 cells. This work will provide key information for the combined application of TPT and CAT/PCA loaded by DNA nanostructures to improve chemotherapy efficacy and reduce side effects.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Xiangtai Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Xinyu Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lixia Yuan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
6
|
Shafiee F, Safaeian L, Gorbani F. Protective effects of protocatechuic acid against doxorubicin- and arsenic trioxide-induced toxicity in cardiomyocytes. Res Pharm Sci 2023; 18:149-158. [PMID: 36873272 PMCID: PMC9976056 DOI: 10.4103/1735-5362.367794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 10/23/2022] [Indexed: 01/21/2023] Open
Abstract
Background and purpose Some chemotherapeutic drugs are associated with an increased risk of cardiotoxicity in patients. Protocatechuic acid (PCA) is a phenolic acid with valuable cardiovascular, chemo-preventive, and anticancer activities. Recent studies have shown the cardioprotective effects of PCA in several pathological conditions. This investigation aimed to assess the possible protective effects of PCA on cardiomyocytes against toxicities caused by anti-neoplastic agents, doxorubicin (DOX), and arsenic trioxide (ATO). Experimental approach H9C2 cells were exposed to DOX (1 μM) or ATO (35 μM) after 24 h pretreatment with PCA (1-100 μM). MTT and lactate dehydrogenase (LDH) tests were used to define cell viability or cytotoxicity. Total oxidant and antioxidant capacities were evaluated by measuring hydroperoxides and ferric-reducing antioxidant power (FRAP) levels. Expression of the TLR4 gene was also quantitatively estimated by real-time polymerase chain reaction. Findings/Results PCA showed a proliferative effect on cardiomyocytes and significantly enhanced cell viability and reduced cytotoxicity of DOX and ATO during MTT and LDH assays. Pretreatment of cardiomyocytes with PCA significantly decreased hydroperoxide levels and elevated FRAP value. Moreover, PCA meaningfully decreased TLR4 expression in DOX-and ATO-treated cardiomyocytes. Conclusions and implications In conclusion, antioxidant and cytoprotective activities were found for PCA versus toxicities caused by DOX and ATO in cardiomyocytes. However, further in vivo investigations are recommended to assess its clinical value for the prevention and treatment of cardiotoxicity induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Leila Safaeian
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Fatemeh Gorbani
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
7
|
Liang Z, Xu Y, Zhang Y, Zhang X, Song J, Qian H, Jin J. Anticancer applications of phytochemicals in gastric cancer: Effects and molecular mechanism. Front Pharmacol 2023; 13:1078090. [PMID: 36712679 PMCID: PMC9877357 DOI: 10.3389/fphar.2022.1078090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant cancer and is a life-threatening disease worldwide. Phytochemicals have been shown to be a rational, safe, non-toxic, and very promising approach to the prevention and treatment of cancer. It has been found that phytochemicals have protective effects against GC through inhibiting cell proliferation, inducing apoptosis and autophagy, suppressing cell invasion and migration, anti-angiogenesis, inhibit Helicobacter pylori infection, regulating the microenvironment. In recent years, the role of phytochemicals in the occurrence, development, drug resistance and prognosis of GC has attracted more and more attention. In order to better understand the relationship between phytochemicals and gastric cancer, we briefly summarize the roles and functions of phytochemicals in GC tumorigenesis, development and prognosis. This review will probably help guide the public to prevent the occurrence and development of GC through phytochemicals, and develop functional foods or drugs for the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumeng Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiajia Song
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, China
| |
Collapse
|
8
|
Yamaguchi Y, Saito T, Takagi M, Nakazawa T, Tamura K. Changes in 5-Fluorouracil-induced external granular cell damage during the time-course of the developing cerebellum of infant rats. J Toxicol Pathol 2022; 35:299-311. [PMID: 36406170 PMCID: PMC9647215 DOI: 10.1293/tox.2022-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/06/2022] [Indexed: 07/06/2024] Open
Abstract
5-Fluorouracil (5-FU) is widely used as a chemotherapeutic agent that blocks DNA synthesis and replication by inhibiting thymidylate synthetase. This study aimed to elucidate 5-FU-induced changes in the external granular cells (EGCs) in the cerebellum of infant rats and the possible underlying mechanism. Six-day-old infant rats were injected subcutaneously with 40 mg/kg of 5-FU, and their cerebellums were examined at 6, 9, 12, and 24 h after treatment (HAT), and 2, 4, and 10 d after treatment (DAT). The width of the external granular layer (EGL) decreased from 24 HAT to 4 DAT in the 5-FU group compared to that in the control group. However, the width in the 5-FU group was comparable to that of the control group at 10 DAT. The number of apoptotic cells, cleaved caspase 3-labeling index (LI%), p21cip1-LI%, and expression levels of p53, p21cip1, and Fas mRNAs increased at 24 HAT. However, no changes were detected in the expression levels of Puma and Bax mRNAs at any time point. BrdU-LI% increased at 6 and 12 HAT but decreased at 24 HAT. The phospho-histone H3-LI% decreased from 6 HAT to 2 DAT. The width of the molecular layer decreased compared to that of the control group at 10 DAT. No differences were observed in Purkinje cell development. These results indicate that 5-FU inhibited cell proliferation by inducing apoptosis of EGCs via activation of Fas and caspase-3 without the involvement of the mitochondrial pathway and induced p53-dependent G1-S and G2-M phase arrest.
Collapse
Affiliation(s)
- Yuko Yamaguchi
- Pathology Division, Gotemba Laboratories, BoZo Research
Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Tsubasa Saito
- Pathology Division, Gotemba Laboratories, BoZo Research
Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Mizuho Takagi
- Pathology Division, Gotemba Laboratories, BoZo Research
Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Tomomi Nakazawa
- Pathology Division, Gotemba Laboratories, BoZo Research
Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Kazutoshi Tamura
- Pathology Division, Gotemba Laboratories, BoZo Research
Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| |
Collapse
|
9
|
Molecular mechanisms associated with the chemoprotective role of protocatechuic acid and its potential benefits in the amelioration of doxorubicin-induced cardiotoxicity: A review. Toxicol Rep 2022; 9:1713-1724. [PMID: 36561952 PMCID: PMC9764176 DOI: 10.1016/j.toxrep.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/25/2022] Open
Abstract
Since its discovery in the 1960 s, doxorubicin (DOX) has constantly elicited the broadest spectrum of cancerocidal activity against human cancers. However, cardiotoxicity caused by DOX directly as well as its metabolites is a great source of concern over the continuous use of DOX in chemotherapy. While the exact mechanism of DOX-induced cardiotoxicity is yet to be completely understood, recent studies indicate oxidative stress, inflammation, and several forms of cell death as key pathogenic mechanisms that underpin the etiology of doxorubicin-induced cardiotoxicity (DIC). Notably, these key mechanistic events are believed to be negatively regulated by 3,4-dihydroxybenzoic acid or protocatechuic acid (PCA)-a plant-based phytochemical with proven anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Here, we review the experimental findings detailing the potential ameliorative effects of PCA under exposure to DOX. We also discuss molecular insights into the pathophysiology of DIC, highlighting the potential intervention points where the use of PCA as a veritable chemoprotective agent may ameliorate DOX-induced cardiotoxicities as well as toxicities due to other anticancer drugs like cisplatin. While we acknowledge that controlled oral administration of PCA during chemotherapy may be insufficient to eliminate all toxicities due to DOX treatment, we propose that the ability of PCA to block oxidative stress, attenuate inflammation, and abrogate several forms of cardiomyocyte cell death underlines its great promise in the amelioration of DIC.
Collapse
|
10
|
Pan B, Xia Y, Gao Z, Zhao G, Wang L, Fang S, Liu L, Yan S. Cinnamomi Ramulus inhibits the growth of colon cancer cells via Akt/ERK signaling pathways. Chin Med 2022; 17:36. [PMID: 35264225 PMCID: PMC8905814 DOI: 10.1186/s13020-022-00588-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colon cancer (CC) ranks the second highest mortality rate among malignant tumors worldwide, and the current mainstream treatment regimens are not very effective. The unique efficacy of Chinese herb medicine (CHM) for cancer has recently attracted increasing attention. Cinnamomi Ramulus (CR), as a classic CHM, has been widely used in the treatment of a variety of diseases for hundreds of years in China, but its specific pharmacological mechanism against CC needs to be fully evaluated. Methods TCMSP and China National Knowledge Infrastructure database were utilized to predict the candidate ingredients of CR, and TCMSP and SwissTargetPrediction database were also employed to predict the drug targets of the candidate ingredients from CR. We subsequently evaluated the therapeutic effect of CR by orally administrating it on CC-bearing mice. Next, we further identified the potential CC-related targets by using Gene Expression Omnibus (GEO) database. Based on these obtained targets, the drug/disease-target PPI networks were constructed using Bisogenet plugin of Cytoscape. The potential core therapeutic targets were then identified through topological analysis using CytoNCA plugin. GO and KEGG enrichment analyses were performed to predict the underlying mechanism of CR against CC. Furthermore, these in silico analysis results were validated by a series of cellular functional and molecular biological assays. UPLC–MS/MS method and molecular docking analysis were employed to identify the potential key components from CR. Results In this study, we firstly found that CR has potential therapeutic effect on cancer. Then, oral administration of CR could inhibit the growth of CC cells in C57BL/6 mice, while inhibiting the viability and motility of CC cells in vitro. We obtained 111 putative core therapeutic targets of CR. Subsequent enrichment analysis on these targets showed that CR could induce apoptosis and cell cycle arrest in CC cells by blocking Akt/ERK signaling pathways, which was further experimentally verified. We identified 5 key components from the crude extract of CR, among which taxifolin was found most likely to be the key active component against CC. Conclusions Our results show that CR as well as its active component taxifolin holds great potential in treatment of CC. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00588-6.
Collapse
Affiliation(s)
- Boyu Pan
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, ITCWM Hospital, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.,Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Yafei Xia
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, ITCWM Hospital, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zilu Gao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Gang Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Liangjiao Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Senbiao Fang
- School of Information Science and Engineering, Central South University, Yuelu District, Changsha, 410006, Hunan, China.
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
| | - Shu Yan
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, ITCWM Hospital, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
11
|
Lin CC, Yang YC, Chen CY, Yin MC. Combination of s-methyl cysteine and protocatechuic acid provided greater lipid-lowering and anti-inflammatory effects in mice liver against chronic alcohol consumption. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1146-1152. [PMID: 34804432 PMCID: PMC8591768 DOI: 10.22038/ijbms.2021.56705.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/04/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Protective effects of s-methyl cysteine (SMC) alone, protocatechuic acid (PCA) alone, and SMC plus PCA against chronic ethanol consumption induced hepatic steatosis and inflammation were investigated. MATERIALS AND METHODS Mice were divided into six groups: normal diet (ND) group, Lieber-DeCarli liquid diet without ethanol (LD diet) group, LD diet with ethanol (LED diet) group, SMC group (LED diet plus 0.25% SMC), PCA group (LED diet plus 0.25% PCA), and SMC+PCA group (LED diet plus 0.125% SMC + 0.125% PCA). After 8 weeks of supplementation, blood and liver were used for analysis. RESULTS Biochemical and histological data showed that SMC plus PCA led to a greater reduction in lipid droplets in the liver than SMC or PCA treatment alone. SMC plus PCA resulted in greater suppression in hepatic mRNA expression of peroxisome proliferator-activated receptor-gamma, sterol regulatory element-binding protein 1c, stearoyl-CoA desaturase-1, cyclooxygenase-2, and myeloperoxidase than SMC or PCA treatment alone. SMC plus PCA led to a greater decrease in hepatic reactive oxygen species and inflammatory cytokine levels than SMC or PCA treatment alone. CONCLUSION These novel findings suggest that the combination of SMC and PCA was a potent remedy for alcoholic liver disorders.
Collapse
Affiliation(s)
- Chun-Che Lin
- Center for Digestive Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Yu Chen
- Department of Gastroenterology, Asia University Hospital, Taichung, Taiwan
| | - Mei-Chin Yin
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan,Corresponding author: Mei-Chin Yin. Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan.Tel: 886-422053366;
| |
Collapse
|