1
|
Badran MM, Alsubaie A, Salem Bekhit MM, Alomrani AH, Almomen A, Ibrahim MA, Alshora DH. Bioadhesive hybrid system of niosomes and pH sensitive in situ gel for itraconazole ocular delivery: Dual approach for efficient treatment of fungal infections. Saudi Pharm J 2024; 32:102208. [PMID: 39697473 PMCID: PMC11653644 DOI: 10.1016/j.jsps.2024.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Itraconazole (ITZ) is a highly effective antifungal agent. However, its oral application is associated with systemic toxicity and poor topical use. The present study aims to improve the antifungal activity of ITZ by loading it into bioadhesive niosomes. This approach is considered to enhance the ocular permeation of ITZ, thereby boosting its efficacy against fungal infections. Therefore, it was encapsulated into niosomes (F1) and subsequently coated with hyaluronic acid (HA; F2), chitosan (CS; F3), or a bilayer of CS/HA (F4). In addition, they were further incorporated into pH-sensitive in situ gels. This dual approach is expected to increase the amount of corneal-permeated ITZ, facilitating more effective management of ocular fungal infection. Firstly, the niosomes were prepared by hydrating proniosomes using span 60, cholesterol, and phospholipid. ITZ-niosomes showed an increase in vesicle size from 165.5 ± 3.4 (F1) to 378.2 ± 7.2 nm (F3). The zeta potential varied within -20.9 ± 2.1 (F1), -29.5 ± 3.1 (F2), 32.3 ± 1.9 (F3), and 22.6 ± 1.3 mV (F4). The high EE% values ranged from 78.1 ± 2.2 % to 86.6 ± 2.9 %. Regarding ITZ release, F1 demonstrated a high release profile, whereas bioadhesive niosomes showed sustained release patterns. Furthermore, in situ gels containing niosomes displayed excellent gelling capacity and viscosity. Remarkably, F3 laden-in situ gels (F3-ISG) demonstrated the highest ex vivo corneal permeability of ITZ and antifungal activity with a safety effect. These results indicate that F3-ISG presents a promising strategy for boosting the ocular delivery of ITZ, that could help in treating ocular fungal infections.
Collapse
Affiliation(s)
- Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Areej Alsubaie
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mounir M. Salem Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa Hasan Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Golestani P. Lipid-based nanoparticles as a promising treatment for the skin cancer. Heliyon 2024; 10:e29898. [PMID: 38698969 PMCID: PMC11064151 DOI: 10.1016/j.heliyon.2024.e29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The prevalence of skin disorders, especially cancer, is increasing worldwide. Several factors are involved in causing skin cancer, but ultraviolet (UV) light, including sunlight and tanning beds, are considered the leading cause. Different methods such as chemotherapy, radiotherapy, cryotherapy, and photodynamic therapy are mostly used for the skin cancer treatment. However, drug resistance and toxicity against cancer cells are related to these treatments. Lipid-nanoparticles have attracted significant interest as delivery systems due to non-invasive and targeted delivery based on the type of active drug. However, the stratum corneum, the outer layer of the skin, is inherently impervious to drugs. Due to their ability to penetrate the deep layers of the skin, skin delivery systems are capable of delivering drugs to target cells in a protected manner. The aim of this review was to examine the properties and applications of nanoliposomes used in the treatment and prevention of numerous types of skin cancer.
Collapse
Affiliation(s)
- Parisa Golestani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
3
|
Fatima I, Rasul A, Shah S, Saadullah M, Islam N, Khames A, Salawi A, Ahmed MM, Almoshari Y, Abbas G, Abourehab MAS, Mehmood Khan S, Chauhdary Z, Alshamrani M, Namazi NI, Naguib DM. Novasomes as Nano-Vesicular Carriers to Enhance Topical Delivery of Fluconazole: A New Approach to Treat Fungal Infections. Molecules 2022; 27:2936. [PMID: 35566287 PMCID: PMC9103678 DOI: 10.3390/molecules27092936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The occurrence of fungal infections has increased over the past two decades. It is observed that superficial fungal infections are treated by conventional dosage forms, which are incapable of treating deep infections due to the barrier activity possessed by the stratum corneum of the skin. This is why the need for a topical preparation with advanced penetration techniques has arisen. This research aimed to encapsulate fluconazole (FLZ) in a novasome in order to improve the topical delivery. The novasomes were prepared using the ethanol injection technique and characterized for percent entrapment efficiency (EE), particle size (PS), zeta potential (ZP), drug release, Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and antifungal activity. The FN7 formulation with 94.45% EE, 110 nm PS and -24 ZP proved to be the best formulation. The FN7 formulation showed a 96% release of FLZ in 8 h. FTIR showed the compatibility of FLZ with excipients and DSC studies confirmed the thermal stability of FLZ in the developed formulation. The FN7 formulation showed superior inhibition of the growth of Candida albicans compared to the FLZ suspension using a resazurin reduction assay, suggesting high efficacy in inhibiting fungal growth.
Collapse
Affiliation(s)
- Iman Fatima
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.F.); (N.I.)
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.F.); (N.I.)
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Nayyer Islam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.F.); (N.I.)
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| | | | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.F.); (N.I.)
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Sajid Mehmood Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| | - Nader Ibrahim Namazi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia;
| | - Demiana M. Naguib
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|