1
|
Duan W, Fan Z, Zhang P, Guo G, Qiu X. Mathematical and computational approaches to epidemic modeling: a comprehensive review. FRONTIERS OF COMPUTER SCIENCE 2015; 9:806-826. [PMID: 32288946 PMCID: PMC7133607 DOI: 10.1007/s11704-014-3369-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 08/04/2014] [Indexed: 05/28/2023]
Abstract
Mathematical and computational approaches are important tools for understanding epidemic spread patterns and evaluating policies of disease control. In recent years, epidemiology has become increasingly integrated with mathematics, sociology, management science, complexity science, and computer science. The cross of multiple disciplines has caused rapid development of mathematical and computational approaches to epidemic modeling. In this article, we carry out a comprehensive review of epidemic models to provide an insight into the literature of epidemic modeling and simulation. We introduce major epidemic models in three directions, including mathematical models, complex network models, and agent-based models. We discuss the principles, applications, advantages, and limitations of these models. Meanwhile, we also propose some future research directions in epidemic modeling.
Collapse
Affiliation(s)
- Wei Duan
- Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management, National University of Defense Technology, Changsha, 410073 China
| | - Zongchen Fan
- Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management, National University of Defense Technology, Changsha, 410073 China
| | - Peng Zhang
- Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management, National University of Defense Technology, Changsha, 410073 China
| | - Gang Guo
- Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management, National University of Defense Technology, Changsha, 410073 China
| | - Xiaogang Qiu
- Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management, National University of Defense Technology, Changsha, 410073 China
| |
Collapse
|
2
|
Voorhees B, Ryder B. Simple graph models of information spread in finite populations. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150028. [PMID: 26064661 PMCID: PMC4453248 DOI: 10.1098/rsos.150028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/23/2015] [Indexed: 05/14/2023]
Abstract
We consider several classes of simple graphs as potential models for information diffusion in a structured population. These include biases cycles, dual circular flows, partial bipartite graphs and what we call 'single-link' graphs. In addition to fixation probabilities, we study structure parameters for these graphs, including eigenvalues of the Laplacian, conductances, communicability and expected hitting times. In several cases, values of these parameters are related, most strongly so for partial bipartite graphs. A measure of directional bias in cycles and circular flows arises from the non-zero eigenvalues of the antisymmetric part of the Laplacian and another measure is found for cycles as the value of the transition probability for which hitting times going in either direction of the cycle are equal. A generalization of circular flow graphs is used to illustrate the possibility of tuning edge weights to match pre-specified values for graph parameters; in particular, we show that generalizations of circular flows can be tuned to have fixation probabilities equal to the Moran probability for a complete graph by tuning vertex temperature profiles. Finally, single-link graphs are introduced as an example of a graph involving a bottleneck in the connection between two components and these are compared to the partial bipartite graphs.
Collapse
Affiliation(s)
- Burton Voorhees
- Center for Science, Athabasca University, 1 University Drive, Athabasca, Alberta, Canada T9S 3A3
- Author for correspondence: Burton Voorhees e-mail:
| | - Bergerud Ryder
- Department of Mathematics, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
3
|
Jeub LGS, Balachandran P, Porter MA, Mucha PJ, Mahoney MW. Think locally, act locally: detection of small, medium-sized, and large communities in large networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012821. [PMID: 25679670 PMCID: PMC5125638 DOI: 10.1103/physreve.91.012821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 06/04/2023]
Abstract
It is common in the study of networks to investigate intermediate-sized (or "meso-scale") features to try to gain an understanding of network structure and function. For example, numerous algorithms have been developed to try to identify "communities," which are typically construed as sets of nodes with denser connections internally than with the remainder of a network. In this paper, we adopt a complementary perspective that communities are associated with bottlenecks of locally biased dynamical processes that begin at seed sets of nodes, and we employ several different community-identification procedures (using diffusion-based and geodesic-based dynamics) to investigate community quality as a function of community size. Using several empirical and synthetic networks, we identify several distinct scenarios for "size-resolved community structure" that can arise in real (and realistic) networks: (1) the best small groups of nodes can be better than the best large groups (for a given formulation of the idea of a good community); (2) the best small groups can have a quality that is comparable to the best medium-sized and large groups; and (3) the best small groups of nodes can be worse than the best large groups. As we discuss in detail, which of these three cases holds for a given network can make an enormous difference when investigating and making claims about network community structure, and it is important to take this into account to obtain reliable downstream conclusions. Depending on which scenario holds, one may or may not be able to successfully identify "good" communities in a given network (and good communities might not even exist for a given community quality measure), the manner in which different small communities fit together to form meso-scale network structures can be very different, and processes such as viral propagation and information diffusion can exhibit very different dynamics. In addition, our results suggest that, for many large realistic networks, the output of locally biased methods that focus on communities that are centered around a given seed node (or set of seed nodes) might have better conceptual grounding and greater practical utility than the output of global community-detection methods. They also illustrate structural properties that are important to consider in the development of better benchmark networks to test methods for community detection.
Collapse
Affiliation(s)
- Lucas G S Jeub
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Prakash Balachandran
- Morgan Stanley, Montreal, Quebec, H3C 3S4, Canada and Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA
| | - Mason A Porter
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom and CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, United Kingdom
| | - Peter J Mucha
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250, USA
| | - Michael W Mahoney
- International Computer Science Institute, Berkeley, California 94704, USA and Department of Statistics, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|