1
|
Shen T, Wang H, Hu R, Lv Y. Developing neural network diagnostic models and potential drugs based on novel identified immune-related biomarkers for celiac disease. Hum Genomics 2023; 17:76. [PMID: 37587523 PMCID: PMC10433645 DOI: 10.1186/s40246-023-00526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND As one of the most common intestinal inflammatory diseases, celiac disease (CD) is typically characterized by an autoimmune disorder resulting from ingesting gluten proteins. Although the incidence and prevalence of CD have increased over time, the diagnostic methods and treatment options are still limited. Therefore, it is urgent to investigate the potential biomarkers and targeted drugs for CD. METHODS Gene expression data was downloaded from GEO datasets. Differential gene expression analysis was performed to identify the dysregulated immune-related genes. Multiple machine algorithms, including randomForest, SVM-RFE, and LASSO, were used to select the hub immune-related genes (HIGs). The immune-related genes score (IG score) and artificial neural network (ANN) were constructed based on HIGs. Potential drugs targeting HIGs were identified by using the Enrichr platform and molecular docking method. RESULTS We identified the dysregulated immune-related genes at a genome-wide level and demonstrated their roles in CD-related immune pathways. The hub genes (MR1, CCL25, and TNFSF13B) were further screened by integrating several machine algorithms. Meanwhile, the CD patients were divided into distinct subtypes with either high- or low-immunoactivity using single-sample gene set enrichment analysis (ssGSEA) and consensus clustering. By constructing IG score based on HIGs, we found that patients with high IG score were mainly attributed to high-immunoactivity subgroups, which suggested a strong link between HIGs and immunoactivity of CD patients. In addition, the novel constructed ANN model showed the sound diagnostic ability of HIGs. Mechanistically, we validated that the HIGs play pivotal roles in regulating CD's immune and inflammatory state. Through targeting the HIGs, we also found potential drugs for anti-CD treatment by using the Enrichr platform and molecular docking method. CONCLUSIONS This study unveils the HIGs and elucidates the networks regulated by these genes in the context of CD. It underscores the pivotal significance of HIGs in accurately predicting the presence or absence of CD in patients. Consequently, this research offers promising prospects for the development of diagnostic biomarkers and therapeutic targets for CD.
Collapse
Affiliation(s)
- Tao Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China.
| | - Haiyang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Rongkang Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yanni Lv
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
2
|
Horton M, Olshan KL, Gleeson E, Regis S, Morson T, Hintze ZJ, Leonard MM, Silvester JA. Low Levels of Detectable Urine and Stool GIPs in Children with Celiac Disease on a Gluten-Free Diet. JPGN REPORTS 2023; 4:e323. [PMID: 37600614 PMCID: PMC10435043 DOI: 10.1097/pg9.0000000000000323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/05/2023] [Indexed: 08/22/2023]
Abstract
Objectives This study examines the prevalence of detectable gluten immunogenic peptides (GIPs) as a proxy for gluten exposure in children with celiac disease on a gluten-free diet in the United States, as estimated by gluten breakdown products excreted in urine and stool. Methods Urine and stool samples were collected in 3 settings (home, gastroenterology clinic, and endoscopy) for pediatric participants (ages 6-21 years old) across 2 medical centers. Commercial ELISA assays were used to quantify the GIPs in each sample. Results GIPs were detected in 4 out of 44 (9.1%) of stool samples and 6 out of 125 (4.8%) of urine samples provided by 84 children. These samples were collected across all settings, and most participants (70%) were asymptomatic at the time of sample collection. For the urine samples collected at the time of endoscopy, all subjects found to have persistent enteropathy had no detectable GIPs (0/12). Discussion GIPs provide an additional method for screening for gluten exposures in individuals with celiac disease on a gluten-free diet, and may be used across multiple settings. We found a low detection rate of GIPs in children. Our finding of undetectable GIPs in individuals with persistent enteropathy may be expected of a single determination under close observation or represent a lack of gluten exposure within the detection window. More research is needed to understand the dynamics of gluten absorption and excretion in the US pediatric population.
Collapse
Affiliation(s)
- Maxwell Horton
- From the Celiac Research Program, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine L. Olshan
- From the Celiac Research Program, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Elizabeth Gleeson
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Stephanie Regis
- From the Celiac Research Program, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Taylor Morson
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Zackary J. Hintze
- From the Celiac Research Program, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maureen M. Leonard
- From the Celiac Research Program, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Jocelyn A. Silvester
- From the Celiac Research Program, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Freeman HJ. Evaluation of Non-dietary Alternatives for Treatment of Adults With Celiac Disease. Front Nutr 2020; 7:562503. [PMID: 33195364 PMCID: PMC7604335 DOI: 10.3389/fnut.2020.562503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
|
4
|
Severance EG, Tveiten D, Lindström LH, Yolken RH, Reichelt KL. The Gut Microbiota and the Emergence of Autoimmunity: Relevance to Major Psychiatric Disorders. Curr Pharm Des 2017; 22:6076-6086. [PMID: 27634185 DOI: 10.2174/1381612822666160914183804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Autoimmune phenotypes are prevalent in major psychiatric disorders. Disequilibria of cellular processes occurring in the gastrointestinal (GI) tract likely contribute to immune dysfunction in psychiatric disorders. As the venue of a complex community of resident microbes, the gut in a homeostatic state equates with a functional digestive system, cellular barrier stability and properly regulated recognition of self and non-self antigens. When gut processes become disrupted as a result of environmental or genetic factors, autoimmunity may ensue. METHODS Here, we review the issues pertinent to autoimmunity and the microbiome in psychiatric disorders and show that many of the reported immune risk factors for the development of these brain disorders are in fact related and consistent with dysfunctions occurring in the gut. We review the few human microbiome studies that have been done in people with psychiatric disorders and supplement this information with mechanistic data gleaned from experimental rodent studies. RESULTS These investigations demonstrate changes in behavior and brain biochemistry directly attributable to alterations in the gut microbiome. We present a model by which autoantigens are produced by extrinsicallyderived food and microbial factors bound to intrinsic components of the gut including receptors present in the enteric nervous system. CONCLUSION This new focus on examining activities outside of the CNS for relevance to the etiology and pathophysiology of psychiatric disorders may require new modalities or a re-evaluation of pharmaceutical targets found in peripheral systems.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology; Department of Pediatrics; Johns Hopkins University School of Medicine; 600 North Wolfe Street; Blalock 1105; Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
5
|
Moreno MDL, Cebolla Á, Muñoz-Suano A, Carrillo-Carrion C, Comino I, Pizarro Á, León F, Rodríguez-Herrera A, Sousa C. Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing. Gut 2017; 66:250-257. [PMID: 26608460 PMCID: PMC5284479 DOI: 10.1136/gutjnl-2015-310148] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Gluten-free diet (GFD) is the only management for coeliac disease (CD). Available methods to assess GFD compliance are insufficiently sensitive to detect occasional dietary transgressions that may cause gut mucosal damage. We aimed to develop a method to determine gluten intake and monitor GFD compliance in patients with CD and to evaluate its correlation with mucosal damage. DESIGN Urine samples of 76 healthy subjects and 58 patients with CD subjected to different gluten dietary conditions were collected. A lateral flow test (LFT) with the highly sensitive and specific G12 monoclonal antibody for the most dominant gluten immunogenic peptides (GIP) and a LFT reader were used to quantify GIP in solid-phase extracted urines. RESULTS GIP were detectable in concentrated urines from healthy individuals previously subjected to GFD as early as 4-6 h after single gluten intake, and remained detectable for 1-2 days. The urine assay revealed infringement of the GFD in about 50% of the patients. Analysis of duodenal biopsies revealed that most of patients with CD (89%) with no villous atrophy had no detectable GIP in urine, while all patients with quantifiable GIP in urine showed incomplete intestinal mucosa recovery. CONCLUSION GIP are detected in urine after gluten consumption, enabling a new and non-invasive method to monitor GFD compliance and transgressions. The method was sensitive, specific and simple enough to be convenient for clinical monitoring of patients with CD as well as for basic and clinical research applications including drug development. TRIAL REGISTRATION NUMBER NCT02344758.
Collapse
Affiliation(s)
- María de Lourdes Moreno
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | - Isabel Comino
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain
| | - Ángeles Pizarro
- Unidad Clínica de Aparato Digestivo, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | | | - Carolina Sousa
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Severance EG, Yolken RH, Eaton WW. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res 2016; 176:23-35. [PMID: 25034760 PMCID: PMC4294997 DOI: 10.1016/j.schres.2014.06.027] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022]
Abstract
Autoimmunity, gastrointestinal (GI) disorders and schizophrenia have been associated with one another for a long time. This paper reviews these connections and provides a context by which multiple risk factors for schizophrenia may be related. Epidemiological studies strongly link schizophrenia with autoimmune disorders including enteropathic celiac disease. Exposure to wheat gluten and bovine milk casein also contribute to non-celiac food sensitivities in susceptible individuals. Co-morbid GI inflammation accompanies humoral immunity to food antigens, occurs early during the course of schizophrenia and appears to be independent from antipsychotic-generated motility effects. This inflammation impacts endothelial barrier permeability and can precipitate translocation of gut bacteria into systemic circulation. Infection by the neurotropic gut pathogen, Toxoplasma gondii, will elicit an inflammatory GI environment. Such processes trigger innate immunity, including activation of complement C1q, which also functions at synapses in the brain. The emerging field of microbiome research lies at the center of these interactions with evidence that the abundance and diversity of resident gut microbiota contribute to digestion, inflammation, gut permeability and behavior. Dietary modifications of core bacterial compositions may explain inefficient gluten digestion and how immigrant status in certain situations is a risk factor for schizophrenia. Gut microbiome research in schizophrenia is in its infancy, but data in related fields suggest disease-associated altered phylogenetic compositions. In summary, this review surveys associative and experimental data linking autoimmunity, GI activity and schizophrenia, and proposes that understanding of disrupted biological pathways outside of the brain can lend valuable information regarding pathogeneses of complex, polygenic brain disorders.
Collapse
Affiliation(s)
- Emily G. Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - William W. Eaton
- Department of Mental Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, U.S.A
| |
Collapse
|
7
|
Differences in gluten metabolism among healthy volunteers, coeliac disease patients and first-degree relatives. Br J Nutr 2016; 114:1157-67. [PMID: 26428276 DOI: 10.1017/s0007114515002767] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coeliac disease (CD) is an immune-mediated enteropathy resulting from exposure to gluten in genetically predisposed individuals. Gluten proteins are partially digested by human proteases generating immunogenic peptides that cause inflammation in patients carrying HLA-DQ2 and DQ8 genes. Although intestinal dysbiosis has been associated with patients with CD, bacterial metabolism of gluten has not been studied in depth thus far. The aim of this study was to analyse the metabolic activity of intestinal bacteria associated with gluten intake in healthy individuals, CD patients and first-degree relatives of CD patients. Faecal samples belonging to twenty-two untreated CD patients, twenty treated CD patients, sixteen healthy volunteers on normal diet, eleven healthy volunteers on gluten-free diet (GFD), seventy-one relatives of CD patients on normal diet and sixty-nine relatives on GFD were tested for several proteolytic activities, cultivable bacteria involved in gluten metabolism, SCFA and the amount of gluten in faeces. We detected faecal peptidasic activity against the gluten-derived peptide 33-mer. CD patients showed differences in faecal glutenasic activity (FGA), faecal tryptic activity (FTA), SCFA and faecal gluten content with respect to healthy volunteers. Alterations in specific bacterial groups metabolising gluten such as Clostridium or Lactobacillus were reported in CD patients. Relatives showed similar parameters to CD patients (SCFA) and healthy volunteers (FTA and FGA). Our data support the fact that commensal microbial activity is an important factor in the metabolism of gluten proteins and that this activity is altered in CD patients.
Collapse
|
8
|
Severance EG, Yolken RH. Role of Immune and Autoimmune Dysfunction in Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016; 23:501-516. [PMID: 33456427 PMCID: PMC7173552 DOI: 10.1016/b978-0-12-800981-9.00029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this chapter, we review data in support of the concept that immune system dysregulation is the most plausible explanation that reconciles gene by environmental interactions in schizophrenia. Early investigations of this topic demonstrated aspects of aberrant activation of humoral immunity, including autoimmunity, associated with schizophrenia, whereas current research efforts have expanded this theme to include elements of innate immunity. Advances in our understanding of inflammation and molecules of both the adaptive and innate immune system and their functional roles in standard brain physiology provide an important context by which schizophrenia might arise as the result of the coupling of immune and neurodevelopmental dysregulation.
Collapse
|
9
|
Freeman HJ. Celiac disease: a disorder emerging from antiquity, its evolving classification and risk, and potential new treatment paradigms. Gut Liver 2015; 9:28-37. [PMID: 25547088 PMCID: PMC4282854 DOI: 10.5009/gnl14288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Celiac disease is a chronic genetically based gluten-sensitive immune-mediated enteropathic process primarily affecting the small intestinal mucosa. The disorder classically presents with diarrhea and weight loss; however, more recently, it has been characterized by subclinical occult or latent disease associated with few or no intestinal symptoms. Diagnosis depends on the detection of typical histopathological biopsy changes followed by a gluten-free diet response. A broad range of clinical disorders may mimic celiac disease, along with a wide range of drugs and other therapeutic agents. Recent and intriguing archeological data, largely from the Gobleki Tepe region of the Fertile Crescent, indicate that celiac disease probably emerged as humans transitioned from hunter-gatherer groups to societies dependent on agriculture to secure a stable food supply. Longitudinal studies performed over several decades have suggested that changes in the prevalence of the disease, even apparent epidemic disease, may be due to superimposed or novel environmental factors that may precipitate its appearance. Recent therapeutic approaches are being explored that may supplement, rather than replace, gluten-free diet therapy and permit more nutritional options for future management.
Collapse
Affiliation(s)
- Hugh J Freeman
- Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Vriezinga SL, Schweizer JJ, Koning F, Mearin ML. Coeliac disease and gluten-related disorders in childhood. Nat Rev Gastroenterol Hepatol 2015; 12:527-36. [PMID: 26100369 DOI: 10.1038/nrgastro.2015.98] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gluten-related disorders such as coeliac disease, wheat allergy and noncoeliac gluten sensitivity are increasingly being diagnosed in children. Coeliac disease occurs frequently, affecting 1-3% of the Western population. The condition manifests at a very young age, more so in girls, and is related to the HLA genotype. Coeliac disease might be considered a public health problem and, as primary prevention is not possible, the debate on mass screening should be reopened. Wheat proteins, including gluten, are responsible for one of the most common food allergies in children: wheat allergy. Unlike coeliac disease and wheat allergy, noncoeliac gluten sensitivity is an unclear and controversial entity. These three gluten-related disorders are treated with a gluten-free diet. In coeliac disease, the diet should be strictly followed, whereas wheat allergy only requires wheat elimination and in noncoeliac gluten sensitivity occasional trials of gluten reintroduction can be done. A good diagnostic work-up is important for gluten-related disorders in childhood to avoid unnecessary restrictive diets in children. In this Review, we provide an overview of the pathogenesis, diagnosis and management of the most common gluten-related disorders in children.
Collapse
Affiliation(s)
- Sabine L Vriezinga
- Department of Paediatrics, Leiden University Medical Centre, Albinusdreef 2/PO 9600, 2300 RC Leiden, Netherlands
| | - Joachim J Schweizer
- Department of Paediatrics, Leiden University Medical Centre, Albinusdreef 2/PO 9600, 2300 RC Leiden, Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Albinusdreef 2/PO 9600, 2300 RC Leiden, Netherlands
| | - M Luisa Mearin
- Department of Paediatrics, Leiden University Medical Centre, Albinusdreef 2/PO 9600, 2300 RC Leiden, Netherlands
| |
Collapse
|