Establishment of a developmental toxicity assay based on human iPSC reporter to detect FGF signal disruption.
iScience 2022;
25:103770. [PMID:
35146387 PMCID:
PMC8819105 DOI:
10.1016/j.isci.2022.103770]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The number of man-made chemicals has increased exponentially recently, and exposure to some of them can induce fetal malformations. Because complex and precisely programmed signaling pathways play important roles in developmental processes, their disruption by external chemicals often triggers developmental toxicity. However, highly accurate and high-throughput screening assays for potential developmental toxicants are currently lacking. In this study, we propose a reporter assay that utilizes human-induced pluripotent stem cells (iPSCs) to detect changes in fibroblast growth factor signaling, which is essential for limb morphogenesis. The dynamics of this signaling after exposure to a chemical were integrated to estimate the degree of signaling disruption, which afforded a good prediction of the capacity of chemicals listed in the ECVAM International Validation Study that induce limb malformations. This study presents an initial report of a human iPSC-based signaling disruption assay, which could be useful for the screening of potential developmental toxicants.
Human iPSC-based FGF signal disruption reporter system was established
FGF signal disruption was a good indicator of limb malformation-related toxicants
Integration of dynamic FGF signal disruption results improved assay performance
Collapse