1
|
Li R, Guan L, Liu Y, Hu Z, Liu J, Li C, Min H. The roles of vitamin C in infectious diseases: A comprehensive review. Nutrition 2025; 134:112733. [PMID: 40154019 DOI: 10.1016/j.nut.2025.112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/01/2025]
Abstract
Vitamin C is a versatile nutrient with essential antioxidant properties and roles in amino acid metabolism, collagen promotion, and hormone synthesis. It has long been regarded as benefitting infectious disease management, although its specific roles remain uncertain. The dominant view is that this efficacy not only stems from its redox regulation in the body but also from its profound impact on the immune system. This review provides a comprehensive overview of Vitamin C's effects on redox regulation and shows how the vitamin influences various immune cells and cell-intrinsic innate immunity signaling pathways, thereby updating and expanding our previous perspectives. Clinically, though some studies and case series have suggested potential benefits of Vitamin C in preventing and (or) treating respiratory tract infections and sepsis and septic shock, the evidence remains controversial. The current data is insufficient to support the routine clinical use of Vitamin C in managing these diseases and requires further rigorous evaluation to establish definitive efficacy and safety profiles. This review thoroughly examines current clinical research progress on Vitamin C, summarizes the primary controversies and their underlying causes, and proposes directions for future clinical research. Furthermore, preclinical evidence shows potential roles for Vitamin C in the supplementary treatment of the "Big Three" infectious diseases: acquired immunodeficiency syndrome (AIDS), tuberculosis, and malaria; however, systematic clinical studies in these areas are lacking. We examine related in vitro and animal studies, as well as clinical trials, and discuss potential roles for Vitamin C as a treatment and (or) adjuvant therapy.
Collapse
Affiliation(s)
- Runze Li
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Liangchao Guan
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Yue Liu
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Zongyi Hu
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Junyu Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Cheng Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Wen L, Shi L, Wan SS, Xu T, Zhang L, Zhou ZG. Changes in the balance of Th17/Treg cells and oxidative stress markers in patients with HIV‑associated pulmonary tuberculosis who develop IRIS. Exp Ther Med 2023; 25:271. [PMID: 37206552 PMCID: PMC10189753 DOI: 10.3892/etm.2023.11970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/23/2023] [Indexed: 05/21/2023] Open
Abstract
Tuberculosis (TB) is the most common opportunistic infection in patients with acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV) infection and is one of the primary causes of death from AIDS. The increased accessibility to highly active antiretroviral therapy (HAART) has significantly improved the clinical outcome of patients with HIV infection. However, following ART, rapid restoration of the immune system leads to immune reconstitution inflammatory syndrome (IRIS). Oxidative stress and innate immunity play a role in TB-associated IRIS (TB-IRIS). The present study investigated the changes that occur in oxidative stress markers and T helper (Th)17/regulatory T (Treg) cell balance and their significance in IRIS patients with HIV-associated pulmonary TB. A total of 316 patients with HIV-associated pulmonary TB were treated with HAART and followed up regularly for 12 weeks. Those who developed IRIS were included in the IRIS group (n=60), while the remaining patients were included in the non-IRIS group (n=256). The changes in plasma oxidative stress markers superoxide dismutase (SOD) and malondialdehyde (MDA) were detected with the ELISA, and the ratio of Th17 to Treg cells in whole blood were analyzed before and after treatment through the flow cytometric assay. Following treatment, MDA and Th17 cells levels were significantly increased while SOD and Treg cells levels were decreased in the IRIS group (P<0.05) compared with before treatment. In the non-IRIS group, a non-significant decrease was observed in SOD levels (P>0.05), while the MDA levels significantly decreased compared with before treatment (P<0.05) and the Th17 and Treg cells levels were both significantly increased (P<0.05). After treatment, compared with the non-IRIS group, the IRIS group showed a significant increase in MDA and Th17 cells and decrease in SOD and Treg cells levels (P<0.05). In addition, Th17 cells levels were positively correlated with MDA but negatively correlated with SOD levels. Treg levels were negatively correlated with MDA and positively correlated with SOD levels (P<0.05). The area under the curve values of serum MDA and SOD, Th17 and Treg levels predicting the occurrence of IRIS were 0.738, 0.883, 0.722 and 0.719, respectively (P<0.05). These results indicated that the above parameters have certain diagnostic value for the occurrence of IRIS. The occurrence of IRIS in patients with HIV-associated pulmonary TB may be associated with oxidative stress and Th17/Treg cell imbalance.
Collapse
Affiliation(s)
- Long Wen
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Lei Shi
- Department of Nursing, The Fourth Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Shan-Shan Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Tao Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Lei Zhang
- Department of Respiratory Medicine, Yicheng People's Hospital of Shandong, Zaozhuang, Shandong 277300, P.R. China
- Correspondence to: Dr Zhi-Guo Zhou, Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, 311 Yingpan Road, Kaifu, Changsha, Hunan 410000, P.R. China
| | - Zhi-Guo Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
- Correspondence to: Dr Zhi-Guo Zhou, Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, 311 Yingpan Road, Kaifu, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
3
|
Nutraceuticals in HIV and COVID-19-Related Neurological Complications: Opportunity to Use Extracellular Vesicles as Drug Delivery Modality. BIOLOGY 2022; 11:biology11020177. [PMID: 35205044 PMCID: PMC8869385 DOI: 10.3390/biology11020177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary In this review, we discuss the potential use of extracellular vesicles (EVs) to deliver dietary supplements to the brain to reduce brain complications associated with HIV, COVID-19, and other brain disorders. Brain-related complications affect people with HIV and COVID-19 alike. Moreover, since HIV patients are at a higher risk of contracting COVID-19, their neurological problems can be exacerbated by COVID-19. The use of dietary supplements together with available treatment options has been shown to reduce the severity of infections. However, these treatments are not chemically compatible with the body’s blood–brain barrier defense mechanism. Therefore, a viable delivery method is needed to deliver drugs and nutraceuticals to the brain in HIV and COVID-19 comorbid patients. Abstract People living with HIV/AIDS (PLWHA) are at an increased risk of severe and critical COVID-19 infection. There is a steady increase in neurological complications associated with COVID-19 infection, exacerbating HIV-associated neurocognitive disorders (HAND) in PLWHA. Nutraceuticals, such as phytochemicals from medicinal plants and dietary supplements, have been used as adjunct therapies for many disease conditions, including viral infections. Appropriate use of these adjunct therapies with antiviral proprieties may be beneficial in treating and/or prophylaxis of neurological complications associated with these co-infections. However, most of these nutraceuticals have poor bioavailability and cannot cross the blood–brain barrier (BBB). To overcome this challenge, extracellular vesicles (EVs), biological nanovesicles, can be used. Due to their intrinsic features of biocompatibility, stability, and their ability to cross BBB, as well as inherent homing capabilities, EVs hold immense promise for therapeutic drug delivery to the brain. Therefore, in this review, we summarize the potential role of different nutraceuticals in reducing HIV- and COVID-19-associated neurological complications and the use of EVs as nutraceutical/drug delivery vehicles to treat HIV, COVID-19, and other brain disorders.
Collapse
|
4
|
Silva ARRD, Brito PDD. Serum levels of antioxidants and its supplementation in people living with HIV: integrative review. REVISTA CIÊNCIAS EM SAÚDE 2021. [DOI: 10.21876/rcshci.v11i2.1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Objective: To conduct an integrative review of serum levels of antioxidants and the effects of their supplementation on people living with HIV (PLHIV). Methods: A research was performed in the electronic databases LILACS and MEDLINE, using the descriptors "HIV" AND "antioxidants"; 110 publications were identified, 92 of which were available in the MEDLINE database and 3 in the LILACS database. After applying the exclusion criteria, 8 articles were selected for final evaluation.Results: The studies selected for the review were divided into 4 prospective observational studies and 4 clinical trials with supplementation of antioxidants or food sources of antioxidants. We observed that the initiation of antiretroviral therapy and its prolonged use negatively influenced the parameters of oxidative stress, and that deficiency of antioxidants was associated with more significant damage to mitochondrial DNA. Supplementation of foods that are sources of antioxidants, such as dark chocolate and spirulina, has had beneficial effects on serum lipids and antioxidant capacity. Conclusion: Clinical trials with a more robust methodology, supplementation of isolated nutrients, for more extended periods of intervention, and with the assessment of food consumption are necessary to elucidate their effects on oxidative stress in PLHIV faced with factors such as the use of antiretroviral therapy and changes in metabolic rates of this population.
Collapse
|
5
|
Berretta M, Quagliariello V, Maurea N, Di Francia R, Sharifi S, Facchini G, Rinaldi L, Piezzo M, Manuela C, Nunnari G, Montopoli M. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9121182. [PMID: 33256059 PMCID: PMC7761324 DOI: 10.3390/antiox9121182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Severe disease commonly manifests as a systemic inflammatory process. Inflammation is associated withthe enhanced production of reactive oxygen and nitrogen species and with a marked reduction in the plasma concentrations of protective antioxidant molecules. This imbalance gives rise to oxidative stress, which is greater in patients with more severe conditions such as sepsis, cancer, cardiovascular disease, acute respiratory distress syndrome, and burns. In these patients, oxidative stress can trigger cell, tissue, and organ damage, thus increasing morbidity and mortality. Ascorbic acid (ASC) is a key nutrient thatserves as an antioxidant and a cofactor for numerous enzymatic reactions. However, humans, unlike most mammals, are unable to synthesize it. Consequently, ASC must be obtained through dietary sources, especially fresh fruit and vegetables. The value of administering exogenous micronutrients, to reestablish antioxidant concentrations in patients with severe disease, has been recognized for decades. Despite the suggestion that ASC supplementation may reduce oxidative stress and prevent several chronic conditions, few large, randomized clinical trials have tested it in patients with severe illness. This article reviews the recent literature on the pharmacological profile of ASC and the role of its supplementation in critically ill patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
- Correspondence:
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| | - Gaetano Facchini
- Division of Medical Oncology, “S. Maria delle Grazie” Hospital—ASL Napoli 2 Nord, 80126 Pozzuoli, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 80121 Napoli, Italy;
| | - Michela Piezzo
- Division of Breast Medical Oncology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| | - Ceccarelli Manuela
- Division of Infectious Disease, University of Catania, 95122 Catania, Italy;
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| |
Collapse
|
6
|
Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of Vitamin A in the Immune System. J Clin Med 2018; 7:E258. [PMID: 30200565 PMCID: PMC6162863 DOI: 10.3390/jcm7090258] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/23/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022] Open
Abstract
Vitamin A (VitA) is a micronutrient that is crucial for maintaining vision, promoting growth and development, and protecting epithelium and mucus integrity in the body. VitA is known as an anti-inflammation vitamin because of its critical role in enhancing immune function. VitA is involved in the development of the immune system and plays regulatory roles in cellular immune responses and humoral immune processes. VitA has demonstrated a therapeutic effect in the treatment of various infectious diseases. To better understand the relationship between nutrition and the immune system, the authors review recent literature about VitA in immunity research and briefly introduce the clinical application of VitA in the treatment of several infectious diseases.
Collapse
Affiliation(s)
- Zhiyi Huang
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, Guangxi, China.
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, Guangxi, China.
| | - Yu Liu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, Guangxi, China.
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, Guangxi, China.
| | - Guangying Qi
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, Guangxi, China.
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, Guangxi, China.
| | - David Brand
- Research Service, VA Medical Center, Memphis, TN 38104, USA.
| | - Song Guo Zheng
- Department of Medicine, Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA 17033, USA.
| |
Collapse
|